The Road to Bad Science Is Paved with Obedience and Secrecy

We often laud intellectual diversity of a scientific research group because we hope that the multitude of opinions can help point out flaws and improve the quality of research long before it is finalized and written up as a manuscript. The recent events surrounding the research in one of the world’s most famous stem cell research laboratories at Harvard shows us the disastrous effects of suppressing diverse and dissenting opinions.

Cultured cells via Shutterstock
Cultured cells via Shutterstock

The infamous “Orlic paper” was a landmark research article published in the prestigious scientific journal Nature in 2001, which showed that stem cells contained in the bone marrow could be converted into functional heart cells. After a heart attack, injections of bone marrow cells reversed much of the heart attack damage by creating new heart cells and restoring heart function. It was called the “Orlic paper” because the first author of the paper was Donald Orlic, but the lead investigator of the study was Piero Anversa, a professor and highly respected scientist at New York Medical College.

Anversa had established himself as one of the world’s leading experts on the survival and death of heart muscle cells in the 1980s and 1990s, but with the start of the new millennium, Anversa shifted his laboratory’s focus towards the emerging field of stem cell biology and its role in cardiovascular regeneration. The Orlic paper was just one of several highly influential stem cell papers to come out of Anversa’s lab at the onset of the new millenium. A 2002 Anversa paper in the New England Journal of Medicine – the world’s most highly cited academic journal –investigated the hearts of human organ transplant recipients. This study showed that up to 10% of the cells in the transplanted heart were derived from the recipient’s own body. The only conceivable explanation was that after a patient received another person’s heart, the recipient’s own cells began maintaining the health of the transplanted organ. The Orlic paper had shown the regenerative power of bone marrow cells in mouse hearts, but this new paper now offered the more tantalizing suggestion that even human hearts could be regenerated by circulating stem cells in their blood stream.

Woman having a heart attack via Shutterstock
Woman having a heart attack via Shutterstock

2003 publication in Cell by the Anversa group described another ground-breaking discovery, identifying a reservoir of stem cells contained within the heart itself. This latest coup de force found that the newly uncovered heart stem cell population resembled the bone marrow stem cells because both groups of cells bore the same stem cell protein called c-kit and both were able to make new heart muscle cells. According to Anversa, c-kit cells extracted from a heart could be re-injected back into a heart after a heart attack and regenerate more than half of the damaged heart!

These Anversa papers revolutionized cardiovascular research. Prior to 2001, most cardiovascular researchers believed that the cell turnover in the adult mammalian heart was minimal because soon after birth, heart cells stopped dividing. Some organs or tissues such as the skin contained stem cells which could divide and continuously give rise to new cells as needed. When skin is scraped during a fall from a bike, it only takes a few days for new skin cells to coat the area of injury and heal the wound. Unfortunately, the heart was not one of those self-regenerating organs. The number of heart cells was thought to be more or less fixed in adults. If heart cells were damaged by a heart attack, then the affected area was replaced by rigid scar tissue, not new heart muscle cells. If the area of damage was large, then the heart’s pump function was severely compromised and patients developed the chronic and ultimately fatal disease known as “heart failure”.

Anversa’s work challenged this dogma by putting forward a bold new theory: the adult heart was highly regenerative, its regeneration was driven by c-kit stem cells, which could be isolated and used to treat injured hearts. All one had to do was harness the regenerative potential of c-kit cells in the bone marrow and the heart, and millions of patients all over the world suffering from heart failure might be cured. Not only did Anversa publish a slew of supportive papers in highly prestigious scientific journals to challenge the dogma of the quiescent heart, he also happened to publish them at a unique time in history which maximized their impact.

In the year 2001, there were few innovative treatments available to treat patients with heart failure. The standard approach was to use medications that would delay the progression of heart failure. But even the best medications could not prevent the gradual decline of heart function. Organ transplants were a cure, but transplantable hearts were rare and only a small fraction of heart failure patients would be fortunate enough to receive a new heart. Hopes for a definitive heart failure cure were buoyed when researchers isolated human embryonic stem cells in 1998. This discovery paved the way for using highly pliable embryonic stem cells to create new heart muscle cells, which might one day be used to restore the heart’s pump function without  resorting to a heart transplant.


Human heart jigsaw puzzle via Shutterstock
Human heart jigsaw puzzle via Shutterstock

The dreams of using embryonic stem cells to regenerate human hearts were soon squashed when the Bush administration banned the generation of new human embryonic stem cells in 2001, citing ethical concerns. These federal regulations and the lobbying of religious and political groups against human embryonic stem cells were a major blow to research on cardiovascular regeneration. Amidst this looming hiatus in cardiovascular regeneration, Anversa’s papers appeared and showed that one could steer clear of the ethical controversies surrounding embryonic stem cells by using an adult patient’s own stem cells. The Anversa group re-energized the field of cardiovascular stem cell research and cleared the path for the first human stem cell treatments in heart disease.

Instead of having to wait for the US government to reverse its restrictive policy on human embryonic stem cells, one could now initiate clinical trials with adult stem cells, treating heart attack patients with their own cells and without having to worry about an ethical quagmire. Heart failure might soon become a disease of the past. The excitement at all major national and international cardiovascular conferences was palpable whenever the Anversa group, their collaborators or other scientists working on bone marrow and cardiac stem cells presented their dizzyingly successful results. Anversa received numerous accolades for his discoveries and research grants from the NIH (National Institutes of Health) to further develop his research program. He was so successful that some researchers believed Anversa might receive the Nobel Prize for his iconoclastic work which had redefined the regenerative potential of the heart. Many of the world’s top universities were vying to recruit Anversa and his group, and he decided to relocate his research group to Harvard Medical School and Brigham and Women’s Hospital 2008.

There were naysayers and skeptics who had resisted the adult stem cell euphoria. Some researchers had spent decades studying the heart and found little to no evidence for regeneration in the adult heart. They were having difficulties reconciling their own results with those of the Anversa group. A number of practicing cardiologists who treated heart failure patients were also skeptical because they did not see the near-miraculous regenerative power of the heart in their patients. One Anversa paper went as far as suggesting that the whole heart would completely regenerate itself roughly every 8-9 years, a claim that was at odds with the clinical experience of practicing cardiologists.  Other researchers pointed out serious flaws in the Anversa papers. For example, the 2002 paper on stem cells in human heart transplant patients claimed that the hearts were coated with the recipient’s regenerative cells, including cells which contained the stem cell marker Sca-1. Within days of the paper’s publication, many researchers were puzzled by this finding because Sca-1 was a marker of mouse and rat cells – not human cells! If Anversa’s group was finding rat or mouse proteins in human hearts, it was most likely due to an artifact. And if they had mistakenly found rodent cells in human hearts, so these critics surmised, perhaps other aspects of Anversa’s research were similarly flawed or riddled with artifacts.

At national and international meetings, one could observe heated debates between members of the Anversa camp and their critics. The critics then decided to change their tactics. Instead of just debating Anversa and commenting about errors in the Anversa papers, they invested substantial funds and efforts to replicate Anversa’s findings. One of the most important and rigorous attempts to assess the validity of the Orlic paper was published in 2004, by the research teams of Chuck Murry and Loren Field. Murry and Field found no evidence of bone marrow cells converting into heart muscle cells. This was a major scientific blow to the burgeoning adult stem cell movement, but even this paper could not deter the bone marrow cell champions.

Despite the fact that the refutation of the Orlic paper was published in 2004, the Orlic paper continues to carry the dubious distinction of being one of the most cited papers in the history of stem cell research. At first, Anversa and his colleagues would shrug off their critics’ findings or publish refutations of refutations – but over time, an increasing number of research groups all over the world began to realize that many of the central tenets of Anversa’s work could not be replicated and the number of critics and skeptics increased. As the signs of irreplicability and other concerns about Anversa’s work mounted, Harvard and Brigham and Women’s Hospital were forced to initiate an internal investigation which resulted in the retraction of one Anversa paper and an expression of concern about another major paper. Finally, a research group published a paper in May 2014 using mice in which c-kit cells were genetically labeled so that one could track their fate and found that c-kit cells have a minimal – if any – contribution to the formation of new heart cells: a fraction of a percent!

The skeptics who had doubted Anversa’s claims all along may now feel vindicated, but this is not the time to gloat. Instead, the discipline of cardiovascular stem cell biology is now undergoing a process of soul-searching. How was it possible that some of the most widely read and cited papers were based on heavily flawed observations and assumptions? Why did it take more than a decade since the first refutation was published in 2004 for scientists to finally accept that the near-magical regenerative power of the heart turned out to be a pipe dream.

One reason for this lag time is pretty straightforward: It takes a tremendous amount of time to refute papers. Funding to conduct the experiments is difficult to obtain because grant funding agencies are not easily convinced to invest in studies replicating existing research. For a refutation to be accepted by the scientific community, it has to be at least as rigorous as the original, but in practice, refutations are subject to even greater scrutiny. Scientists trying to disprove another group’s claim may be asked to develop even better research tools and technologies so that their results can be seen as more definitive than those of the original group. Instead of relying on antibodies to identify c-kit cells, the 2014 refutation developed a transgenic mouse in which all c-kit cells could be genetically traced to yield more definitive results – but developing new models and tools can take years.

The scientific peer review process by external researchers is a central pillar of the quality control process in modern scientific research, but one has to be cognizant of its limitations. Peer review of a scientific manuscript is routinely performed by experts for all the major academic journals which publish original scientific results. However, peer review only involves a “review”, i.e. a general evaluation of major strengths and flaws, and peer reviewers do not see the original raw data nor are they provided with the resources to replicate the studies and confirm the veracity of the submitted results. Peer reviewers rely on the honor system, assuming that the scientists are submitting accurate representations of their data and that the data has been thoroughly scrutinized and critiqued by all the involved researchers before it is even submitted to a journal for publication. If peer reviewers were asked to actually wade through all the original data generated by the scientists and even perform confirmatory studies, then the peer review of every single manuscript could take years and one would have to find the money to pay for the replication or confirmation experiments conducted by peer reviewers. Publication of experiments would come to a grinding halt because thousands of manuscripts would be stuck in the purgatory of peer review. Relying on the integrity of the scientists submitting the data and their internal review processes may seem naïve, but it has always been the bedrock of scientific peer review. And it is precisely the internal review process which may have gone awry in the Anversa group.

Just like Pygmalion fell in love with Galatea, researchers fall in love with the hypotheses and theories that they have constructed. To minimize the effects of these personal biases, scientists regularly present their results to colleagues within their own groups at internal lab meetings and seminars or at external institutions and conferences long before they submit their data to a peer-reviewed journal. The preliminary presentations are intended to spark discussions, inviting the audience to challenge the veracity of the hypotheses and the data while the work is still in progress. Sometimes fellow group members are truly skeptical of the results, at other times they take on the devil’s advocate role to see if they can find holes in their group’s own research. The larger a group, the greater the chance that one will find colleagues within a group with dissenting views. This type of feedback is a necessary internal review process which provides valuable insights that can steer the direction of the research.

Considering the size of the Anversa group – consisting of 20, 30 or even more PhD students, postdoctoral fellows and senior scientists – it is puzzling why the discussions among the group members did not already internally challenge their hypotheses and findings, especially in light of the fact that they knew extramural scientists were having difficulties replicating the work.

Retraction Watch is one of the most widely read scientific watchdogs which tracks scientific misconduct and retractions of published scientific papers. Recently, Retraction Watch published the account of an anonymous whistleblower who had worked as a research fellow in Anversa’s group and provided some unprecedented insights into the inner workings of the group, which explain why the internal review process had failed:

“I think that most scientists, perhaps with the exception of the most lucky or most dishonest, have personal experience with failure in science—experiments that are unreproducible, hypotheses that are fundamentally incorrect. Generally, we sigh, we alter hypotheses, we develop new methods, we move on. It is the data that should guide the science.

 In the Anversa group, a model with much less intellectual flexibility was applied. The “Hypothesis” was that c-kit (cd117) positive cells in the heart (or bone marrow if you read their earlier studies) were cardiac progenitors that could: 1) repair a scarred heart post-myocardial infarction, and: 2) supply the cells necessary for cardiomyocyte turnover in the normal heart.

 This central theme was that which supplied the lab with upwards of $50 million worth of public funding over a decade, a number which would be much higher if one considers collaborating labs that worked on related subjects.

 In theory, this hypothesis would be elegant in its simplicity and amenable to testing in current model systems. In practice, all data that did not point to the “truth” of the hypothesis were considered wrong, and experiments which would definitively show if this hypothesis was incorrect were never performed (lineage tracing e.g.).”

Discarding data that might have challenged the central hypothesis appears to have been a central principle.


Hood over screen - via Shutterstock
Hood over screen – via Shutterstock

According to the whistleblower, Anversa’s group did not just discard undesirable data, they actually punished group members who would question the group’s hypotheses:

In essence, to Dr. Anversa all investigators who questioned the hypothesis were “morons,” a word he used frequently at lab meetings. For one within the group to dare question the central hypothesis, or the methods used to support it, was a quick ticket to dismissal from your position.

The group also created an environment of strict information hierarchy and secrecy which is antithetical to the spirit of science:

“The day to day operation of the lab was conducted under a severe information embargo. The lab had Piero Anversa at the head with group leaders Annarosa Leri, Jan Kajstura and Marcello Rota immediately supervising experimentation. Below that was a group of around 25 instructors, research fellows, graduate students and technicians. Information flowed one way, which was up, and conversation between working groups was generally discouraged and often forbidden.

 Raw data left one’s hands, went to the immediate superior (one of the three named above) and the next time it was seen would be in a manuscript or grant. What happened to that data in the intervening period is unclear.

 A side effect of this information embargo was the limitation of the average worker to determine what was really going on in a research project. It would also effectively limit the ability of an average worker to make allegations regarding specific data/experiments, a requirement for a formal investigation.

This segregation of information is a powerful method to maintain an authoritarian rule and is more typical for terrorist cells or intelligence agencies than for a scientific lab, but it would definitely explain how the Anversa group was able to mass produce numerous irreproducible papers without any major dissent from within the group.

In addition to the secrecy and segregation of information, the group also created an atmosphere of fear to ensure obedience:

“Although individually-tailored stated and unstated threats were present for lab members, the plight of many of us who were international fellows was especially harrowing. Many were technically and educationally underqualified compared to what might be considered average research fellows in the United States. Many also originated in Italy where Dr. Anversa continues to wield considerable influence over biomedical research.

 This combination of being undesirable to many other labs should they leave their position due to lack of experience/training, dependent upon employment for U.S. visa status, and under constant threat of career suicide in your home country should you leave, was enough to make many people play along.

 Even so, I witnessed several people question the findings during their time in the lab. These people and working groups were subsequently fired or resigned. I would like to note that this lab is not unique in this type of exploitative practice, but that does not make it ethically sound and certainly does not create an environment for creative, collaborative, or honest science.”

Foreign researchers are particularly dependent on their employment to maintain their visa status and the prospect of being fired from one’s job can be terrifying for anyone.

This is an anonymous account of a whistleblower and as such, it is problematic. The use of anonymous sources in science journalism could open the doors for all sorts of unfounded and malicious accusations, which is why the ethics of using anonymous sources was heavily debated at the recent ScienceOnline conference. But the claims of the whistleblower are not made in a vacuum – they have to be evaluated in the context of known facts. The whistleblower’s claim that the Anversa group and their collaborators received more than $50 million to study bone marrow cell and c-kit cell regeneration of the heart can be easily verified at the public NIH grant funding RePORTer website. The whistleblower’s claim that many of the Anversa group’s findings could not be replicated is also a verifiable fact. It may seem unfair to condemn Anversa and his group for creating an atmosphere of secrecy and obedience which undermined the scientific enterprise, caused torment among trainees and wasted millions of dollars of tax payer money simply based on one whistleblower’s account. However, if one looks at the entire picture of the amazing rise and decline of the Anversa group’s foray into cardiac regeneration, then the whistleblower’s description of the atmosphere of secrecy and hierarchy seems very plausible.

The investigation of Harvard into the Anversa group is not open to the public and therefore it is difficult to know whether the university is primarily investigating scientific errors or whether it is also looking into such claims of egregious scientific misconduct and abuse of scientific trainees. It is unlikely that Anversa’s group is the only group that might have engaged in such forms of misconduct. Threatening dissenting junior researchers with a loss of employment or visa status may be far more common than we think. The gravity of the problem requires that the NIH – the major funding agency for biomedical research in the US – should look into the prevalence of such practices in research labs and develop safeguards to prevent the abuse of science and scientists.


Note: An earlier version of this article was first published on

Growing Skepticism about the Stem Cell Acid Trip

In January 2014, the two papers “Stimulus-triggered fate conversion of somatic cells into pluripotency” and “Bidirectional developmental potential in reprogrammed cells with acquired pluripotency” published in the journal Nature by Haruko Obokata and colleagues took the world of stem cell research by surprise.

Since Shinya Yamanaka’s landmark discovery that adult skin cells could be reprogrammed into embryonic-like induced pluripotent stem cells (iPSCs) by introducing selected embryonic genes into adult cells, laboratories all over the world have been using modifications of the “Yamanaka method” to create their own stem cell lines. The original Yamanaka method published in 2006 used a virus which integrated into the genome of the adult cell to introduce the necessary genes. Any introduction of genetic material into a cell carries the risk of causing genetic aberrancies that could lead to complications, especially if the newly generated stem cells are intended for therapeutic usage in patients.


Researchers have therefore tried to modify the “Yamanaka method” and reduce the risk of genetic aberrations by either using genetic tools to remove the introduced genes once the cells are fully reprogrammed to a stem cell state, introducing genes without non-integrating viruses or by using complex cocktails of chemicals and growth factors in order to generate stem cells without the introduction of any genes into the adult cells.

The papers by Obokata and colleagues at the RIKEN center in Kobe, Japan use a far more simple method to reprogram adult cells. Instead of introducing foreign genes, they suggest that one can expose adult mouse cells to a severe stress such as an acidic solution. The cells which survive acid-dipping adventure (25 minutes in a solution with pH 5.7) activate their endogenous dormant embryonic genes by an unknown mechanism. The researchers then show that these activated cells take on properties of embryonic stem cells or iPSCs if they are maintained in a stem cell culture medium and treated with the necessary growth factors. Once the cells reach the stem cell state, they can then be converted into cells of any desired tissue, both in a culture dish as well as in a developing mouse embryo. Many of the experiments in the papers were performed by starting out with adult mouse lymphocytes, but the researchers also found that mouse skin fibroblasts and other cells could also be successfully converted into an embryonic-like state using the acid stress.

My first reaction was incredulity. How could such a simple and yet noxious stress such as exposing cells to acid be sufficient to initiate a complex “stemness” program? Research labs have spent years fine-tuning the introduction of the embryonic genes, trying to figure out the optimal combination of genes and timing of when the genes are essential during the reprogramming process. These two papers propose that the whole business of introducing stem cell genes into adult cells was unnecessary – All You Need Is Acid.


This sounds too good to be true. The recent history in stem cell research has taught us that we need to be skeptical. Some of the most widely cited stem cell papers cannot be replicated. This problem is not unique to stem cell research, because other biomedical research areas such as cancer biology are also struggling with issues of replicability, but the high scientific impact of burgeoning stem cell research has forced its replicability issues into the limelight. Nowadays, whenever stem cell researchers hear about a ground-breaking new stem cell discovery, they often tend to respond with some degree of skepticism until multiple independent laboratories can confirm the results.

My second reaction was that I really liked the idea. Maybe we had never tried something as straightforward as an acid stress because we were too narrow-minded, always looking for complex ways to create stem cells instead of trying simple approaches. The stress-induction of stem cell behavior may also represent a regenerative mechanism that has been conserved by evolution. When our amphibian cousins regenerate limbs following an injury, adult tissue cells are also reprogrammed to a premature state by the stress of the injury before they start building a new limb.

The idea of stress-induced reprogramming of adult cells to an embryonic-like state also has a powerful poetic appeal, which inspired me to write the following haiku:


The old warrior

plunges into an acid lake

to emerge reborn.


(Read more about science-related haikus here)

Just because the idea of acid-induced reprogramming is so attractive does not mean that it is scientifically accurate or replicable.

A number of concerns about potential scientific misconduct in the context of the two papers have been raised and it appears that the RIKEN center is investigating these concerns. Specifically, anonymous bloggers have pointed out irregularities in the figures of the papers and that some of the images may be duplicated. We will have to wait for the results of the investigation, but even if image errors or duplications are found, this does not necessarily mean that this was intentional misconduct or fraud. Assembling manuscripts with so many images is no easy task and unintentional errors do occur. These errors are probably far more common than we think. High profile papers undergo much more scrutiny than the average peer-reviewed paper, and this is probably why we tend to uncover them more readily in such papers. For example, image duplication errors were discovered in the 2013 Cell paper on human cloning, but many researchers agreed that the errors in the 2013 Cell paper were likely due to sloppiness during the assembly of the submitted manuscript and did not constitute intentional fraud.

Irrespective of the investigation into the irregularities of figures in the two Nature papers, the key question that stem cell researchers have to now address is whether the core findings of the Obokata papers are replicable. Can adult cells – lymphocytes, skin fibroblasts or other cells – be converted into embryonic-like stem cells by an acid stress? If yes, then this will make stem cell generation far easier and it will open up a whole new field of inquiry, leading to many new exciting questions. Do human cells also respond to acid stress in the same manner as the mouse cells? How does acid stress reprogram the adult cells? Is there an acid-stress signal that directly acts on stem cell transcription factors or does the stress merely activate global epigenetic switches? Are other stressors equally effective? Does this kind of reprogramming occur in our bodies in response to an injury such as low oxygen or inflammation because these kinds of injuries can transiently create an acidic environment in our tissues?

Researchers all around the world are currently attempting to test the effect of acid exposure on the activation of stem cell genes. Paul Knoepfler’s stem cell blog is currently soliciting input from researchers trying to replicate the work. Paul makes it very clear that this is an informal exchange of ideas so that researchers can learn from each other on a “real-time” basis. It is an opportunity to find out about how colleagues are progressing without having to wait for 6-12 months for the next big stem cell meeting or the publication of a paper confirming or denying the replication of acid-induced reprogramming. Posting one’s summary of results on a blog is not as rigorous as publishing a peer-reviewed paper with all the necessary methodological details, but it can at least provide some clues as to whether some or all of the results in the controversial Obokata papers can be replicated.

If the preliminary findings of multiple labs posted on the blog indicate that lymphocytes or skin cells begin to activate their stem cell gene signature after acid stress, then we at least know that this is a project which merits further investigation and researchers will be more willing to invest valuable time and resources to conduct additional replication experiments. On the other hand, if nearly all the researchers post negative results on the blog, then it is probably not a good investment of resources to spend the next year or so trying to replicate the results.

It does not hurt to have one’s paradigms or ideas challenged by new scientific papers as long as we realize that paradigm-challenging papers need to be replicated. The Nature papers must have undergone rigorous peer review before their publication, but scientific peer review does not involve checking replicability of the results. Peer reviewers focus on assessing the internal logic, experimental design, novelty, significance and validity of the conclusions based on the presented data. The crucial step of replicability testing occurs in the post-publication phase. The post-publication exchange of results on scientific blogs by independent research labs is an opportunity to crowd-source replicability testing and thus accelerate the scientific authentication process. Irrespective of whether or not the attempts to replicate acid-induced reprogramming succeed, the willingness of the stem cell community to engage in a dialogue using scientific blogs and evaluate replicability is an important step forward.
Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, Niwa H, Yamato M, & Vacanti CA (2014). Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature, 505 (7485), 641-7 PMID: 24476887

Replicability of High-Impact Papers in Stem Cell Research

I recently used the Web of Science database to generate a list of the most highly cited papers in stem cell research. As of July 2013, the search for original research articles which use the key word “stem cells” resulted in the following list of the ten most widely cited papers to date:


Human ESC colony – Wikimedia

1. Pittenger M et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143-147

Citations: 8,157


2.  Thomson JA et al. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145-1147

Citations: 5,565


3. Takahashi K and Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4): 663-676

Citations: 5,034


4. Takahashi K et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861-872

Citations: 4,061


5. Donehower LA et al  (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366): 215-221

Citations: 3,279


6. Al-Hajj M et al (2003) Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences 100(7): 3983-3988

Citations: 3,183


7. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858): 1917-1920

Citations: 3,086


8. Jiang YH et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41-49

Citations: 2,983


9. Orlic D et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410 (6829):701-705

Citations: 2,961


10. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043): 834-838

Citations: 2,917


Three of the articles (Donehower et al, Al-Hajj et al and Lu et al) in this “top ten list” do not focus on stem cells but are actually cancer research papers. They were probably identified by the search because the authors may have made comparisons to stem cells or used stem cells as tools.The remaining seven articles are indeed widely known in the stem cell field.


The Science paper by Pittenger and colleagues in 1999 provided a very comprehensive description of mesenchymal stem cells (MSCs), a type of adult stem cell which is found in the bone marrow alongside hematopoietic stem cells (HSCs). Despite the fact that MSCs and HSCs are both adult stem cells in the bone marrow, they have very different functions. HSCs give rise to circulating blood cells, whereas MSCs primarily form bone, fat and cartilage as was nicely demonstrated by Pittenger and colleagues.

The article by Thomson and colleagues was published in 1998 in the journal Science described the derivation of human embryonic stem cells (ESCs) and revolutionized the field of stem cell research. While adult stem cells have a very limited capacity in terms of lineages they can turn into, ESCs are derived from the early blastocyst stage of embryonic development (within the first 1-2 weeks following fertilization) and thus retain the capacity to turn into a very wide range of tissues, such as neurons, heart cells, blood vessel cells or liver cells. This paper not only identified the methods for isolating human ESCs, but also how to keep them in culture and expand them as undifferentiated stem cells.

The Cell paper by Takahashi and Yamanaka in 2006 represented another major advancement in the field of stem cell biology, because it showed for the first time that a mouse adult skin cell (fibroblast) could be reprogrammed and converted into a truly pluripotent stem cell (an induced pluripotent stem cell or iPSC) which exhibited all the major characteristics of an embryonic stem cell (ESC). It was as if the adult skin cell was traveling back in time, erasing its identity of having been a skin cell and returning to primordial, embryonic-like stem cell. Only one year later, Dr. Yamanaka’s group was able to demonstrate the same phenomena for adult human skin cells in the 2007 Cell paper (Takahashi et al), and in the same year a different group independently confirmed that adult human cells could be reprogrammed to the iPSC state (Science paper by Yu et al in 2007). The generation of iPSCs described in these three papers is probably the most remarkable discovery in stem cell biology during the past decade. It is no wonder that each of these three papers have been cited several thousand times even though they were published only six or seven years ago, and that Dr. Yamanaka was awarded the 2012 Nobel prize for this pioneering work.

All five of the above-mentioned stem cell papers have one thing in common: the results have been repeated and confirmed by numerous independent laboratories all over the world. However, this does not necessarily hold true for the other two highly cited stem cell papers on this list.

The 2002 Nature paper by Jiang and colleagues from Dr. Verfaillie’s laboratory at the University of Minnesota proposed that the bone marrow contained a rather special subset of adult MSCs which had a much broader differentiation potential than had been previously recognized. While adult MSCs were thought to primarily turn into bone, cartilage or fat when given the appropriate cues, this rare new cell type – referred to as MAPCs (multipotent adult progenitor cells) – appeared to differentiate into a much broader range of tissues. The paper even showed data from an experiment in which these adult mouse bone marrow stem cells were combined with embryonic cells and gave rise to a chimeric mouse. i.e. a mouse in which the tissues were in part derived from standard embryonic cells and in part from the newly discovered adult MAPCs. Such chimerism suggested that the MAPCs were embryonic-like, contributing to the formation of all the tissues in the mice. At the time of its publication, this paper was met with great enthusiasm because it proved that the adult body contained embryonic-like cells, hidden away in the bone marrow, and that these MAPCs could be used to regenerate ailing organs and tissues without having to use ethically problematic human embryonic stem cells.

There was just one major catch. Many laboratories around the world tried to replicate the results and were unable to identify the MAPCs, and even when they found cells that were MAPCs, they were unable to confirm the embryonic-like nature of the cells. In a remarkable example of investigative journalism, the science journalists Peter Aldhous and Eugenie Reich identified multiple irregularities in the publications involving MAPCs and documented the inability of researchers to replicate the findings by publishing the results of their investigation in the New Scientist (PDF).

The second high profile stem cell paper which was also plagued by an inability to replicate the results was the 2001 Nature paper by Orlic and colleagues. In this paper from Dr. Anversa’s laboratory, the authors suggested that adult hematopoietic (blood-forming) stem cells from the bone marrow could regenerate an infarcted heart by becoming heart cells (cardiomyocytes). It was a rather bold claim, because simply injecting these blood-forming stem cells into the heart seemed to be sufficient to redirect their fate. Instead of giving rise to red and white blood cells, these bone marrow cells were generating functional heart cells. If this were the case, then every patient could be potentially treated with their own bone marrow and grow back damaged heart tissue after a heart attack. Unfortunately, it was too good to be true. Two leading stem cell laboratories partnered up to confirm the results, but even after years of experiments, they were unable to find any evidence of adult bone marrow stem cells converting into functional heart cells. They published their findings three years later, also in the journal Nature:

Murry CE et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428(6983): 664-668

Citations: 1,150


Interestingly, the original paper which had made the claim that bone marrow cells can become functional heart cells has been cited nearly 3,000 times, whereas the refutation by Murry and colleagues, published in the same high-profile journal has been cited only 1,150 times. The vast majority of the nearly 3,000 citations of the 2001 paper by Orlic and colleagues occurred after it had been refuted in 2004! The 2001 Orlic et al paper has even been used to justify clinical trials in which bone marrow was obtained from heart attack patients and injected into their hearts. As expected after the refutation by Murry and colleagues, the success of these clinical trials was rather limited One of the largest bone marrow infusion trials in heart attack patients was recently published, showing no success of the therapy.

These claims of the two papers (Orlic et al and Jiang et al) were quite innovative and exciting, and they were also published in a high-profile, peer-reviewed journal, just like the other five stem cell papers. The crucial difference was the fact that their findings could not be replicated by other laboratories. Despite their lack of replicability, both papers had an enormous impact on the field of stem cell research. Senior scientists, postdocs and graduate students may have devoted a substantial amount of time and resources to developing projects that built on the findings of these two papers, only to find out that they could not be replicated. If there is a lesson to be learned, it is that we need to be rather cautious in terms of our enthusiasm for new claims in stem cell biology until they have been appropriately confirmed by other researchers. Furthermore, we need to streamline the replicability testing process so that we do not have to wait years before we find out that one of the most highly prized discoveries cannot be independently confirmed.


Update 7/24/2013: Peter Aldhous reminded me that the superb job of investigative journalism into the question of MAPCs was performed in partnership with the science writer Eugenie Reich, the author of a book on scientific fraud. I have updated the blog post to reflect this.

Recent Study Raises Questions About Using Adult Stem Cells for Chronic Heart Disease

A recent clinical study (POSEIDON Randomized Trial) investigated the effects of transplanting bone marrow derived adult stem cells into patients with known heart disease. The results were presented at the 2012 American Heart Association (AHA) meeting in Los Angeles and also published in the article “Comparison of Allogeneic vs Autologous Bone Marrow–Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy: The POSEIDON Randomized Trial“. The article by Dr. Joshua Hare and colleagues appeared in the online edition of the Journal of the American Medical Association on November 6, 2012.

The primary goal of the study was to compare whether adult stem cells from other donors (allogeneic cells) are just as safe as the stem cells derived from the patients’ own bone marrow (autologous cells). Thirty patients with a prior heart attack and reduced cardiac function received either allogeneic or autologous cells. The injected cells were mesenchymal stem cells (MSCs), an adult stem cell type that resides within the bone marrow and primarily gives rise to bone, fat or cartilage tissue. MSCs are quite distinct from hematopoietic stem cells (HSCs) which are also present in the bone marrow but give rise to blood cells. In the POSEIDON study, patients underwent a cardiac catheterization and the MSCs were directly injected into the heart muscle. Various measurements of safety and cardiac function were performed before and up to one year after the cell injection.

The good news is that in terms of safety, there was no significant difference when either autologous or allogeneic MSCs were used. Within the first month after the cell injection, only one patient in each group was hospitalized for what may have been a major treatment related side effect. In the long-run, the number of adverse events was very similar in both groups. The implication of this finding is potentially significant. It suggests that one can use off-the-shelf adult stem cells from a healthy donor to treat a patient with heart disease. This is much more practical than having to isolate the bone marrow from a patient and wait for 4-8 weeks to expand his or her own bone marrow stem cells.

The disappointing news from this study is that one year following the stem cell injection, there was minimal improvement in the cardiac function of the patients. The ejection fraction of the heart is an indicator of how well the heart contracts and the normal range for healthy patients is roughly 55-60%. In the current study, patients who received allogeneic cells started out with an average ejection fraction of 27.9% and the value increased to 29.5% one year after the cell injection. The patients who received autologous cells had a mean ejection fraction of 26.2% prior to the cell transplantation and a mean ejection fraction of 28.5% one year after the stem cell therapy. In both groups, the improvement was minimal and not statistically significant. A different measure of the functional capacity of the heart is the assessment of the peak oxygen consumption. This measurement correlates well with the survival of a patient and is also used to help decide if a patient needs a heart transplant. There was no significant change in the peak oxygen consumption in either of the two groups of patients, one year after the treatment. Some other measures did indicate a minor improvement, such as the reduction of the heart attack scar size in both patient groups but this was apparently not enough to improve the ejection fraction or oxygen consumption.

One of the key issues in interpreting the results is the fact that there was no placebo control group. The enrollment in a research study and the cell injection procedure itself could have contributed to minor non-specific or placebo benefits that were unrelated to the stem cell treatments. One odd finding was that the patient sub-group which showed a statistically significant improvement in ejection fraction was the group which received the least stem cells. If the observed minor benefits were indeed the result of the injected cells turning into cardiac cells, one would expect that more cells would lead to greater functional improvement. The efficacy of the lowest number of cells points to non-specific effects from the cell injection or to an unknown mechanism by which the injected cells activate cardiac repair without necessarily becoming cardiac cells themselves.

The results of this study highlight some key problems with current attempts to use adult stem cells in cardiovascular patients. Many studies have shown that adult stem cells have a very limited differentiation potential and that they do not really turn into beating, functional heart cells. Especially in patients with established, long-standing heart disease, the utility of adult stem cells may be very limited. The damage that the heart of these patients has suffered is probably so severe that they need stem cells which can truly regenerate the heart. Examples of such regenerative stem cells are embryonic stem cells or induced pluripotent stem cells which have a very broad differentiation potential. Cardiac stem cells, which exist in very low numbers within the heart itself, are also able to become functional heart cells. Each of these three cell types is challenging to use in patients, which is why many current studies have resorted to using the more convenient adult bone marrow stem cells.

Human embryonic stem cells can develop into functional heart cells, but there have been numerous ethical and regulatory concerns about using them. Induced pluripotent stem cells (iPSCs) appear to have the capacity to become functional heart cells, similar to what has been observed for human embryonic stem cells. However, iPSCs were only discovered six years ago and we still have a lot to learn more about how they work. Lastly, cardiac stem cells are very promising but isolating them from the heart requires an additional biopsy procedure which can also carry some risks for the patients. Hopefully, the fact that adult bone marrow stem cells showed only minimal benefits in the POSEIDON study will encourage researchers to use these alternate stem cells (even if they are challenging to use) instead of adult bone marrow stem cells for future studies in patients with chronic heart disease.

One factor that makes it difficult to interpret the POSEIDON trial is the lack of a placebo control group. This is a major problem for many stem cell studies, because it is not easy to ethically justify a placebo group for invasive procedures such as a stem cell implantation. The placebo patients would also have to receive a cardiac catheterization and injections into the heart tissue, but instead of stem cells, the injections would just contain a cell-free liquid solution. Scientifically, such a placebo control group is necessary to determine whether the stem cells are effective, but this scientific need has to be weighed against the ethics of a “placebo” heart catheterization. Even if one were to ethically justify a “placebo” heart catheterization, it may not be easy to recruit volunteer patients for the study if they knew that they had a significant chance of receiving “empty” injections into their heart muscle.

There is one ongoing study which is very similar in design to the POSEIDON trial and it does contain a placebo group: The TAC-HFT trial. The results of this trial are not yet available, but they may have a major impact on whether or not bone marrow stem cells have a clinical future. If the TAC-HFT trial shows that the bone marrow stem cell treatment for patients with chronic heart disease has no benefits or only minor benefits when compared to the placebo group, it will become increasingly difficult to justify the use of these cells in heart patients.

In summary, the POSEIDON trial has shown that treating chronic heart disease patients with bone marrow derived stem cells is not yet ready for prime time. Bone marrow cells from strangers may be just as safe as one’s own cells, but if bone marrow stem cells are not very effective for treating chronic heart disease, than it may just be a moot point.


Image credit: Wikipedia

The Importance of Being Embryonic

Human ESC colony – Wikimedia

There are three broad categories of human stem cells: 1) adult stem cells, 2) embryonic stem cells (ESCs) and 3) induced pluripotent stem cells (iPSCs). Adult stem cells can be found in selected adult tissues, such as the hematopoietic stem cells in the bone marrow which give rise to a variety of blood cells on a daily basis in an adult. Such adult stem cells are quite rare and, when compared to ESCs, somewhat limited in the type of cells they can generate. Hematopoietic stem cells, for example, routinely produce leukocytes (white blood cells) and erythrocytes (red blood cells), but most researchers agree that they cannot give rise heart muscle cells. On the other hand, human ESCs are pluripotent, which refers to the fact that they can differentiate into nearly all cell types, from neurons to insulin-producing pancreatic cells or even heart muscle cells.

Human ESCs are usually derived from human eggs that were created in an in vitro fertilization clinic but never implanted in a woman. Such clinics often generate far more fertilized human eggs than they actually implant, because it is difficult to predict how many implantation attempts are necessary before a successful pregnancy can be achieved. The “back-up” eggs remain in a freezer at the in vitro fertilization clinic and the donors can then decide whether they want these eggs to be used for the generation of human ESCs, which can be used for either research or ESC-based therapies. The informed consent of the donors is critical and needs to be documented before the ethics committees at the research institutions permit their usage. In spite of these regulations, some religious groups in the US have voiced concerns about using the ESCs, because they feel that even though the donated fertilized egg was never implanted in a woman, it could have been implanted and that its fertilized state already indicates a degree of personhood that requires protection. When the fertilized egg is cultured in a lab and ESCs are derived from it, the fertilized egg is invariably destroyed and from a certain religious perspective, this constitutes a destruction of a human life. Due to concerns about the ethics of using human ESCs, multiple US-based Christian groups have championed the use of adult stem cells to help repair injured tissues and organs. However, since adult stem cells are very rare and limited in their differentiation potential, most stem cell biologists do not see adult stem cells as a suitable alternative to ESCs.

A landmark paper published by Shinya Yamanaka’s group in 2007 provided a new perspective in the gridlock between demands of Christian groups to ban human ESC research and the desire of stem cell biologists to use human ESCs for regenerative medicine.  Yamanaka and his colleagues were able to show that human adult skin fibroblasts could be converted into embryonic-like stem cells (induced pluripotent stem cells or iPSCs). The iPSCs were not adult stem cells with, but actually exhibited the broad differentiation capacity that was previously only seen in human ESCs. From an ethical perspective, iPSCs seemed like a perfect solution since they could be generated without the destruction of any fertilized eggs. Shinya Yamanaka and John Gurdon, whose earlier work had set the stage for Yamanaka’s discovery, received the 2012 Nobel Prize for these exciting findings. Yamanaka’s work was not only lauded by fellow scientists, but also by religious groups, who felt that his work abolished the need for human ESCs. What these religious organizations did not understand was that human ESC research provided the foundation for Yamanaka’s research. All the factors used to reprogram adult skin cells into iPSCs were derived from a careful analysis of ESCs and the culture of human iPSCs was only made possible after the culture of human ESCs had been established in the late 1990s. To this day, the comparison of human ESCs and iPSCs is a topic of active investigation. In many ways, iPSC research is still – pardon the pun – in its embryonic stage. We are still in the process of understanding how an adult cell can be reprogrammed into an iPSC and whether the reprogramming process leaves any kind of marks or blemishes that would affect the generated iPSC.

To understand the biology and nature of iPSCs, researchers routinely use them side-by-side with human ESCs, which still serve as the “gold-standard” for a pluripotent stem cell. At a symposium of the International Society of Stem Cell Research (ISSCR) in San Francisco on August 24, 2012, Yamanaka showed the results of a new study in which he compared the gene expression profiles of 49 different human iPSC lines and 10 different human ESC lines. The comparison revealed that the majority of iPSC lines are indistinguishable from human ESCs, but that there is a minority of iPSC cell lines that behave very differently from human ESCs. Other stem cell researchers have also shown both similarities and differences between ESCs and iPSCs, and definitive conclusions about whether human ESCs and iPSCs are equally suitable for regenerating human tissues and organs cannot yet be drawn.

These new studies remind us that human ESC research is still a very active area of investigation and that in the years to come, research on both ESCs and iPSCs is needed. This was also emphasized in a recent statement by the ISSCR:


Yamanaka’s recent and exciting advances demonstrate that it is possible to reprogram cells in adult human tissues into cells that very closely resemble, but may not be identical to, ES cells. Along with recent progress on redirecting cell fate to enhance tissue repair, these experiments have captured the imagination of the scientific community worldwide. While many scientists are very optimistic about the future of this new research, some people in political circles have incorrectly interpreted this enthusiasm as a verdict that research on human ES cells is no longer necessary. This conclusion is not yet scientifically justified.

At present, and in the foreseeable future, there is a strong scientific and medical consensus that continued research on all types of stem cells is critical to developing research strategies that will ultimately provide new therapies. Supporting all forms of stem cell research is in the best long-term interests of a broad spectrum of patients with debilitating diseases and injuries. In fact, predictions about what might or might not be possible cannot substitute for careful and rigorous research to discover what strategy will provide the most successful therapeutic intervention for a given disease or condition. The basic tools for these discoveries include human ES cells, which remain the benchmark for assessing pluripotency and the ability of cells to develop into all the different cell types of the body.

In the wake of the announcement of the Nobel Prize, the ISSCR (whose current president is Shinya Yamanaka) wanted to pre-empt any attempts to dismiss the importance of human ESC research, which remains a cornerstone of stem cell biology and regenerative medicine. I applaud the ISSCR for this pro-active approach. Taking ethical concerns into account is important, but one also needs to make sure that scientific discoveries are not misused to put forward political or religious agendas. In the next years or decades, we may indeed discover that iPSCs can completely replace human ESCs. On the other hand, we may discover that iPSCs and ESCs will play distinct and complementary roles in the future of regenerative medicine. We will not know the answer to the question until we conduct the research and keep an open mind when we assess the results. The nascent biology of iPSCs and ESCs is a journey into the unknown and this is what makes it such an exciting area of research.