Growing Skepticism about the Stem Cell Acid Trip

In January 2014, the two papers “Stimulus-triggered fate conversion of somatic cells into pluripotency” and “Bidirectional developmental potential in reprogrammed cells with acquired pluripotency” published in the journal Nature by Haruko Obokata and colleagues took the world of stem cell research by surprise.

Since Shinya Yamanaka’s landmark discovery that adult skin cells could be reprogrammed into embryonic-like induced pluripotent stem cells (iPSCs) by introducing selected embryonic genes into adult cells, laboratories all over the world have been using modifications of the “Yamanaka method” to create their own stem cell lines. The original Yamanaka method published in 2006 used a virus which integrated into the genome of the adult cell to introduce the necessary genes. Any introduction of genetic material into a cell carries the risk of causing genetic aberrancies that could lead to complications, especially if the newly generated stem cells are intended for therapeutic usage in patients.

billboard-63978_150

Researchers have therefore tried to modify the “Yamanaka method” and reduce the risk of genetic aberrations by either using genetic tools to remove the introduced genes once the cells are fully reprogrammed to a stem cell state, introducing genes without non-integrating viruses or by using complex cocktails of chemicals and growth factors in order to generate stem cells without the introduction of any genes into the adult cells.

The papers by Obokata and colleagues at the RIKEN center in Kobe, Japan use a far more simple method to reprogram adult cells. Instead of introducing foreign genes, they suggest that one can expose adult mouse cells to a severe stress such as an acidic solution. The cells which survive acid-dipping adventure (25 minutes in a solution with pH 5.7) activate their endogenous dormant embryonic genes by an unknown mechanism. The researchers then show that these activated cells take on properties of embryonic stem cells or iPSCs if they are maintained in a stem cell culture medium and treated with the necessary growth factors. Once the cells reach the stem cell state, they can then be converted into cells of any desired tissue, both in a culture dish as well as in a developing mouse embryo. Many of the experiments in the papers were performed by starting out with adult mouse lymphocytes, but the researchers also found that mouse skin fibroblasts and other cells could also be successfully converted into an embryonic-like state using the acid stress.

My first reaction was incredulity. How could such a simple and yet noxious stress such as exposing cells to acid be sufficient to initiate a complex “stemness” program? Research labs have spent years fine-tuning the introduction of the embryonic genes, trying to figure out the optimal combination of genes and timing of when the genes are essential during the reprogramming process. These two papers propose that the whole business of introducing stem cell genes into adult cells was unnecessary – All You Need Is Acid.

 

This sounds too good to be true. The recent history in stem cell research has taught us that we need to be skeptical. Some of the most widely cited stem cell papers cannot be replicated. This problem is not unique to stem cell research, because other biomedical research areas such as cancer biology are also struggling with issues of replicability, but the high scientific impact of burgeoning stem cell research has forced its replicability issues into the limelight. Nowadays, whenever stem cell researchers hear about a ground-breaking new stem cell discovery, they often tend to respond with some degree of skepticism until multiple independent laboratories can confirm the results.

My second reaction was that I really liked the idea. Maybe we had never tried something as straightforward as an acid stress because we were too narrow-minded, always looking for complex ways to create stem cells instead of trying simple approaches. The stress-induction of stem cell behavior may also represent a regenerative mechanism that has been conserved by evolution. When our amphibian cousins regenerate limbs following an injury, adult tissue cells are also reprogrammed to a premature state by the stress of the injury before they start building a new limb.

The idea of stress-induced reprogramming of adult cells to an embryonic-like state also has a powerful poetic appeal, which inspired me to write the following haiku:

 

The old warrior

plunges into an acid lake

to emerge reborn.

 

(Read more about science-related haikus here)

Just because the idea of acid-induced reprogramming is so attractive does not mean that it is scientifically accurate or replicable.

A number of concerns about potential scientific misconduct in the context of the two papers have been raised and it appears that the RIKEN center is investigating these concerns. Specifically, anonymous bloggers have pointed out irregularities in the figures of the papers and that some of the images may be duplicated. We will have to wait for the results of the investigation, but even if image errors or duplications are found, this does not necessarily mean that this was intentional misconduct or fraud. Assembling manuscripts with so many images is no easy task and unintentional errors do occur. These errors are probably far more common than we think. High profile papers undergo much more scrutiny than the average peer-reviewed paper, and this is probably why we tend to uncover them more readily in such papers. For example, image duplication errors were discovered in the 2013 Cell paper on human cloning, but many researchers agreed that the errors in the 2013 Cell paper were likely due to sloppiness during the assembly of the submitted manuscript and did not constitute intentional fraud.

Irrespective of the investigation into the irregularities of figures in the two Nature papers, the key question that stem cell researchers have to now address is whether the core findings of the Obokata papers are replicable. Can adult cells – lymphocytes, skin fibroblasts or other cells – be converted into embryonic-like stem cells by an acid stress? If yes, then this will make stem cell generation far easier and it will open up a whole new field of inquiry, leading to many new exciting questions. Do human cells also respond to acid stress in the same manner as the mouse cells? How does acid stress reprogram the adult cells? Is there an acid-stress signal that directly acts on stem cell transcription factors or does the stress merely activate global epigenetic switches? Are other stressors equally effective? Does this kind of reprogramming occur in our bodies in response to an injury such as low oxygen or inflammation because these kinds of injuries can transiently create an acidic environment in our tissues?

Researchers all around the world are currently attempting to test the effect of acid exposure on the activation of stem cell genes. Paul Knoepfler’s stem cell blog is currently soliciting input from researchers trying to replicate the work. Paul makes it very clear that this is an informal exchange of ideas so that researchers can learn from each other on a “real-time” basis. It is an opportunity to find out about how colleagues are progressing without having to wait for 6-12 months for the next big stem cell meeting or the publication of a paper confirming or denying the replication of acid-induced reprogramming. Posting one’s summary of results on a blog is not as rigorous as publishing a peer-reviewed paper with all the necessary methodological details, but it can at least provide some clues as to whether some or all of the results in the controversial Obokata papers can be replicated.

If the preliminary findings of multiple labs posted on the blog indicate that lymphocytes or skin cells begin to activate their stem cell gene signature after acid stress, then we at least know that this is a project which merits further investigation and researchers will be more willing to invest valuable time and resources to conduct additional replication experiments. On the other hand, if nearly all the researchers post negative results on the blog, then it is probably not a good investment of resources to spend the next year or so trying to replicate the results.

It does not hurt to have one’s paradigms or ideas challenged by new scientific papers as long as we realize that paradigm-challenging papers need to be replicated. The Nature papers must have undergone rigorous peer review before their publication, but scientific peer review does not involve checking replicability of the results. Peer reviewers focus on assessing the internal logic, experimental design, novelty, significance and validity of the conclusions based on the presented data. The crucial step of replicability testing occurs in the post-publication phase. The post-publication exchange of results on scientific blogs by independent research labs is an opportunity to crowd-source replicability testing and thus accelerate the scientific authentication process. Irrespective of whether or not the attempts to replicate acid-induced reprogramming succeed, the willingness of the stem cell community to engage in a dialogue using scientific blogs and evaluate replicability is an important step forward.

 

ResearchBlogging.org
Obokata H, Wakayama T, Sasai Y, Kojima K, Vacanti MP, Niwa H, Yamato M, & Vacanti CA (2014). Stimulus-triggered fate conversion of somatic cells into pluripotency. Nature, 505 (7485), 641-7 PMID: 24476887

Cellular Alchemy: Converting Fibroblasts Into Heart Cells

Medieval alchemists devoted their lives to the pursuit of the infamous Philosopher’s Stone, an elusive substance that was thought to convert base metals into valuable gold. Needless to say, nobody ever discovered the Philosopher’s Stone. Well, perhaps some alchemist did get lucky but was wise enough to keep the discovery secret. Instead of publishing the discovery and receiving the Nobel Prize for Alchemy, the lucky alchemist probably just walked around in junkyards, surreptitiously collected scraps of metal and brought them to home to create a Scrooge-McDuck-style money bin.  Today, we view the Philosopher’s Stone as just a myth that occasionally resurfaces in the titles of popular fantasy novels, but cell biologists have discovered their own version of the Philosopher’s Stone: The conversion of fibroblast cells into precious heart cells (cardiomyocytes) or brain cells (neurons).

 

Fibroblasts are an abundant cell type, found in many organs such as the heart, liver and the skin. One of their main functions is to repair wounds and form scars in this process. They are fairly easy to grow or to expand, both in the body as well as in a culture dish. The easy access to large quantities of fibroblasts makes them analogous to the “base metals” of the alchemist. Adult cardiomyocytes, on the other hand, are not able to grow, which is why a heart attack which causes death of cardiomyocytes can be so devastating. There is a tiny fraction of regenerative stem-cell like cells in the heart that are activated after a heart attack and regenerate some cardiomyocytes, but most of the damaged and dying heart cells are replaced by a scar – formed by the fibroblasts in the heart. This scar keeps the heart intact so that the wall of the heart does not rupture, but it is unable to contract or beat, thus weakening the overall pump function of the heart. In a large heart attack, a substantial portion of cardiomycoytes are replaced with scar tissue, which can result in heart failure and heart failure.

A few years back, a research group at the Gladstone Institute of Cardiovascular Disease (University of California, San Francisco) headed by Deepak Srivastava pioneered a very interesting new approach to rescuing heart function after a heart attack.  In a 2010 paper published in the journal Cell, the researchers were able to show that plain-old fibroblasts from the heart or from the tail of a mouse could be converted into beating cardiomyocytes! The key to this cellular alchemy was the introduction of three genes – Gata4, Mef2C and Tbx5 also known as the GMT cocktail– into the fibroblasts. These genes encode for developmental cardiac transcription factors, i.e. proteins that regulate the expression of genes which direct the formation of heart cells. The basic idea was that by introducing these regulatory factors, they would act as switches that turn on the whole heart gene program machinery. Unlike the approach of the Nobel Prize laureate Shinya Yamanaka, who had developed a method to generate stem cells (induced pluripotent stem cells or iPSCs) from fibroblasts, Srivastava’s group bypassed the whole stem cell generation process and directly created heart cells from fibroblasts. In a follow-up paper published in the journal Nature in 2012, the Srivastava group took this research to the next level by introducing the GMT cocktail directly into the heart of mice and showing that this substantially improved heart function after a heart attack. Instead of merely forming scars, the fibroblasts in the heart were being converted into functional, beating heart cells – cellular alchemy with great promise for new cardiovascular therapies.

As exciting as these discoveries were, many researchers remained skeptical because the cardiac stem cell field has so often seen paradigm-shifting discoveries appear on the horizon, only to later on find out that they cannot be replicated by other laboratories. Fortunately, Eric Olson’s group at the University of Texas, Southwestern Medical Center also published a paper in Nature in 2012, independently confirming that cardiac fibroblasts could indeed be converted into cardiomyocytes. They added on a fourth factor to the GMT cocktail because it appeared to increase the success of conversion. Olson’s group was also able to confirm Srivastava’s finding that directly treating the mouse hearts with these genes helped convert cardiac fibroblasts into heart cells. They also noticed an interesting oddity. Their success of creating heart cells from fibroblasts in the living mouse was far better than what they would have expected from their experiments in a dish. They attributed this to the special cardiac environment and the presence of other cells in the heart that may have helped the fibroblasts convert to beating heart cells. However, another group of scientists attempted to replicate the findings of the 2010 Cell paper and found that their success rate was far lower than that of the Srivastava group. In the paper entitled “Inefficient Reprogramming of Fibroblasts into Cardiomyocytes Using Gata4, Mef2c, and Tbx5” published in the journal Circulation Research in 2012, Chen and colleagues found that very few fibroblasts could be converted into cardiomyocytes and that the electrical properties of the newly generated heart cells did not match up to those of adult heart cells. One of the key differences between this Circulation Research paper and the 2010 paper of the Srivastava group was that Chen and colleagues used fibroblasts from older mice, whereas the Srivastava group had used fibroblasts from newly born mice. Arguably, the use of older cells by Chen and colleagues might be a closer approximation to the cells one would use in patients. Most patients with heart attacks are older than 40 years and not newborns.

These studies were all performed on mouse fibroblasts being converted into heart cells, but they did not address the question whether human fibroblasts would behave the same way. A recent paper in the Proceedings of the National Academy of Sciences by Eric Olson’s laboratory (published online before print on March 4, 2013 by Nam and colleagues) has now attempted to answer this question. Their findings confirm that human fibroblasts can also be converted into beating heart cells, however the group of genes required to coax the fibroblasts into converting is slightly different and also requires the introduction of microRNAs – tiny RNA molecules that can also regulate the expression of a whole group of genes. Their paper also points out an important caveat.  The generated heart-like cells were not uniform and showed a broad range of function, with only some of the spontaneously contracting and with an electrical activity pattern that was not the same as in adult heart cells.

Where does this whole body of work leave us? One major finding seems to be fairly solid. Fibroblasts can be converted into beating heart cells. The efficiency of conversion and the quality of the generated heart cells – from mouse or human fibroblasts – still needs to be optimized. Even though the idea of cellular alchemy sounds fascinating, there are many additional obstacles that need to be overcome before such therapies could ever be tested in humans. The method to introduce these genes into the fibroblasts used viruses which permanently integrate into the DNA of the fibroblast and could cause genetic anomalies in the fibroblasts. It is unlikely that such viruses could be used in patients. The fact that the generated heart cells show heterogeneity in their electrical activity could become a major problem for patients because patches of newly generated heart cells in one portion of the heart might be beating at a different rate of rhythm than other patches. Such electrical dyssynchony can cause life threatening heart rhythm problems, which means that the electrical properties of the generated cells need to be carefully understood and standardized. We also know little about the long-term survival of these converted cells in the heart and whether the converted cells maintain their heart-cell-like activity for months or years. The idea of directly converting fibroblasts by introducing the genes into the heart instead of first obtaining the fibroblasts, then converting them in a dish and lastly implanting the converted cells back into the heart sounds very convenient. But this convenience comes at a price. It requires human gene therapy which has its own risks and it is very difficult to control the cell conversion process in an intact heart of a patient. On the other hand, if cells are converted in a dish, one can easily test and discard the suboptimal cells and only implant the most mature or functional heart cells.

This process of cellular alchemy is still in its infancy. It is one of the most exciting new areas in the field of regenerative medicine, because it shows how plastic cells are. Hopefully, as more and more labs begin to investigate the direct reprogramming of cells, we will be able to address the obstacles and challenges posed by this emerging field.

 

Image credit: Painting in 1771 by Joseph Wright of Derby – The Alchymist, In Search of the Philosopher’s Stone via Wikimedia Commons

 

ResearchBlogging.org
Nam, Y., Song, K., Luo, X., Daniel, E., Lambeth, K., West, K., Hill, J., DiMaio, J., Baker, L., Bassel-Duby, R., & Olson, E. (2013). Reprogramming of human fibroblasts toward a cardiac fate Proceedings of the National Academy of Sciences, 110 (14), 5588-5593 DOI: 10.1073/pnas.1301019110