Crowdfunding and Tribefunding in Science

Competition for government research grants to fund scientific research remains fierce in the United States. The budget of the National Institutes of Health (NIH), which constitute the major source of funding for US biological and medical research, has been increased only modestly during the past decade but it is not even keeping up with inflation. This problem is compounded by the fact that more scientists are applying for grants now than one or two decades ago, forcing the NIH to enforce strict cut-offs and only fund the top 10-20% of all submitted research proposals. Such competition ought to be good for the field because it could theoretically improve the quality of science. Unfortunately, it is nearly impossible to discern differences between excellent research grants. For example, if an institute of the NIH has a cut-off at the 13 percentile range, then a grant proposal judged to be in the top 10% would receive funding but a proposal in top 15% would end up not being funded. In an era where universities are also scaling back their financial support for research, an unfunded proposal could ultimately lead to the closure of a research laboratory and the dismissal of several members of a research team. Since the prospective assessment of a research proposal’s scientific merits are somewhat subjective, it is quite possible that the budget constraints are creating cemeteries of brilliant ideas and concepts, a world of scientific what-ifs that are forever lost.

Red Panda
Red Panda

How do we scientists deal with these scenarios? Some of us keep soldiering on, writing one grant after the other. Others change and broaden the direction of their research, hoping that perhaps research proposals in other areas are more likely to receive the elusive scores that will qualify for funding. Yet another approach is to submit research proposals to philanthropic foundations or non-profit organizations, but most of these organizations tend to focus on research which directly impacts human health. Receiving a foundation grant to study the fundamental mechanisms by which the internal clocks of plants coordinate external timing cues such as sunlight, food and temperature, for example, would be quite challenging. One alternate source of research funding that is now emerging is “scientific crowdfunding” in which scientists use web platforms to present their proposed research project to the public and thus attract donations from a large number of supporters. The basic underlying idea is that instead of receiving a $50,000 research grant from one foundation or government agency, researchers may receive smaller donations from 10, 50 or even a 100 supporters and thus finance their project.

The website is a scientific crowdfunding platform which presents an intriguing array of projects in search of backers, ranging from “Death of a Tyrant: Help us Solve a Late Cretaceous Dinosaur Mystery!” to “Eating tough stuff with floppy jaws – how do freshwater rays eat crabs, insects, and mollusks?” Many of the projects include a video in which the researchers outline the basic goals and significance of their project and then also provide more detailed information on the webpage regarding how the funds will be used. There is also a “Discussion” section for each proposed project in which researchers answer questions raised by potential backers and, importantly, a “Results” in which researchers can report emerging results once their project is funded.

How can scientists get involved in scientific crowdfunding? Julien Vachelard and colleagues recently published an excellent overview of scientific crowdfunding. They analyzed the projects funded on and found that projects which successfully achieved the funding goal tend to have 30-40 backers. The total amount of funds raised for most projects ranged from about $3,000 to $5,000. While these amounts are impressive, they are still far lower than a standard foundation or government agency grant in biomedical research. These smaller amounts could support limited materials to expand ongoing projects, but they are not sufficient to carry out standard biomedical research projects which cover salaries and stipends of the researchers. The annual stipends for postdoctoral research fellows alone run in the $40,000 – $55,000 range.

Vachelard and colleagues also provide great advice for how scientists can increase the likelihood of funding. Attention span is limited on the internet so researchers need to convey the key message of their research proposal in a clear, succinct and engaging manner. It is best to use powerful images and videos, set realistic goals (such as $3,000 to $5,000), articulate what the funds will be used for, participate in discussions to answer questions and also update backers with results as they emerge. Presenting research in a crowdfunding platform is an opportunity to educate the public and thus advance science, forcing scientists to develop better communication skills. These collateral benefits to the scientific enterprise extend beyond the actual amount of funding that is solicited.

One of the concerns that is voiced about scientific crowdfunding is that it may only work for “panda bear science“, i.e. scientific research involving popular themes such as cute and cuddly animals or studying life on other planets. However, a study of what actually gets funded in a scientific crowdfunding campaign revealed that the subject matter was not as important as how well the researchers communicated with their audience. A bigger challenge for the long-term success of scientific crowdfunding may be the limited amounts that are raised and therefore only cover the cost of small sub-projects but are neither sufficient to embark on exploring exciting new ideas and independent ideas nor offset salary and personnel costs. Donating $20 or $50 to a project is very different from donating amounts such as $1,000 because the latter requires not only the necessary financial resources but also a represents a major personal investment in the success of the research project. To initiate an exciting new biomedical research project in the $50,000 or $100,000 range, one needs several backers who are willing to donate $1,000 or more.

Perhaps one solution could be to move from a crowdfunding towards a tribefunding model. Crowds consist of a mass of anonymous people, mostly strangers in a confined space who do not engage each other. Tribes, on the other hand, are characterized by individuals who experience a sense of belonging and fellowship, they share and take responsibility for each other. The “tribes” in scientific tribefunding would consist of science supporters or enthusiasts who recognize the importance of the scientific work and also actively participate in discussions not just with the scientists but also with each other. Members of a paleontology tribe could include specialists and non-specialists who are willing to put in the required time to study the scientific background of a proposed paleontology research project, understand how it would advance the field and how even negative results (which are quite common in science) could be meaningful.

Tribefunding in higher education and science may sound like a novel concept but certain aspects of tribefunding are already common practice in the United States, albeit under different names. When wealthy alumni establish endowments for student scholarships, fellowship programs or research centers at their alma mater, it is in part because they feel a tribe-like loyalty towards the institutions that laid the cornerstones of their future success. The students and scholars who will benefit from these endowments are members of the same academic institution or tribe. The difference between the currently practiced form of philanthropic funding and the proposed tribefunding model is that tribe identity would not be defined by where one graduated from but instead by scientific interests.

Tribefunding could also impact the review process of scientific proposals. Currently, peer reviewers who assess the quality of scientific proposals for government agencies spend a substantial amount of time assessing the strengths and limitations of each proposal, and then convene either in person or via conference calls to arrive at a consensus regarding the merits of a proposal. Researchers often invest months of effort when they prepare research proposals which is why peer reviewers take their work very seriously and devote the required time to review each proposal carefully. Although the peer review system for grant proposals is often criticized because reviewers can make errors when they assess the quality of proposals, there are no established alternatives for how to assess research proposals. Most peer reviewers also realize that they are part of a “tribe”, with the common interest of selecting the best science. However, the definition of a “peer” is usually limited to other scientists, most of whom are tenured professors at academic institutions and does not really solicit input from non-academic science supporters.  In a tribefunding model, the definition of a “peer” would be expanded to professional scientists as well as science supporters for any given area of science. All members of the tribe could participate during the review and selection of the best projects  as well as throughout the funding period of the research projects that receive the support.

Merging the grassroots character and public outreach of crowdfunding with the sense of fellowship and active dialogue in a “scientific tribe” could take scientific crowdfunding to the next level. A comment section on a webpage is not sufficient to develop such a “tribe” affiliation but regular face-to-face meetings or conventional telephone/Skype conference calls involving several backers (independent of whether they can donate $50 or $5,000) may be more suitable. Developing a sense of ownership through this kind of communication would mean that every member of the science “tribe” realizes that they are a stakeholder. This sense of project ownership may not only increase donations, but could also create a grassroots synergy between laboratory and tribe, allowing for meaningful education and intellectual exchange.


Vachelard J, Gambarra-Soares T, Augustini G, Riul P, Maracaja-Coutinho V (2016) A Guide to Scientific Crowdfunding. PLoS Biol 14(2): e1002373. doi:10.1371/journal.pbio.1002373

Note: An earlier version of this article was first published on the 3Quarksdaily blog.

Vachelard J, Gambarra-Soares T, Augustini G, Riul P, & Maracaja-Coutinho V (2016). A Guide to Scientific Crowdfunding. PLoS Biology, 14 (2) PMID: 26886064

The Dire State of Science in the Muslim World

Universities and the scientific infrastructures in Muslim-majority countries need to undergo radical reforms if they want to avoid falling by the wayside in a world characterized by major scientific and technological innovations. This is the conclusion reached by Nidhal Guessoum and Athar Osama in their recent commentary “Institutions: Revive universities of the Muslim world“, published in the scientific journal Nature. The physics and astronomy professor Guessoum (American University of Sharjah, United Arab Emirates) and Osama, who is the founder of the Muslim World Science Initiative, use the commentary to summarize the key findings of the report “Science at Universities of the Muslim World” (PDF), which was released in October 2015 by a task force of policymakers, academic vice-chancellors, deans, professors and science communicators. This report is one of the most comprehensive analyses of the state of scientific education and research in the 57 countries with a Muslim-majority population, which are members of the Organisation of Islamic Cooperation (OIC).

Map of Saudi Arabia in electronic circuits via Shutterstock (copyright drical)
Map of Saudi Arabia using electronic circuits via Shutterstock (copyright drical)

Here are some of the key findings:

1.    Lower scientific productivity in the Muslim world: The 57 Muslim-majority countries constitute 25% of the world’s population, yet they only generate 6% of the world’s scientific publications and 1.6% of the world’s patents.

2.    Lower scientific impact of papers published in the OIC countries: Not only are Muslim-majority countries severely under-represented in terms of the numbers of publications, the papers which do get published are cited far less than the papers stemming from non-Muslim countries. One illustrative example is that of Iran and Switzerland. In the 2014 SCImago ranking of publications by country, Iran was the highest-ranked Muslim-majority country with nearly 40,000 publications, just slightly ahead of Switzerland with 38,000 publications – even though Iran’s population of 77 million is nearly ten times larger than that of Switzerland. However, the average Swiss publication was more than twice as likely to garner a citation by scientific colleagues than an Iranian publication, thus indicating that the actual scientific impact of research in Switzerland was far greater than that of Iran.

To correct for economic differences between countries that may account for the quality or impact of the scientific work, the analysis also compared selected OIC countries to matched non-Muslim countries with similar per capita Gross Domestic Product (GDP) values (PDF). The per capita GDP in 2010 was $10,136 for Turkey, $8,754 for Malaysia and only $7,390 for South Africa. However, South Africa still outperformed both Turkey and Malaysia in terms of average citations per scientific paper in the years 2006-2015 (Turkey: 5.6; Malaysia: 5.0; South Africa: 9.7).

3.    Muslim-majority countries make minimal investments in research and development: The world average for investing in research and development is roughly 1.8% of the GDP. Advanced developed countries invest up to 2-3 percent of their GDP, whereas the average for the OIC countries is only 0.5%, less than a third of the world average! One could perhaps understand why poverty-stricken Muslim countries such as Pakistan do not have the funds to invest in research because their more immediate concerns are to provide basic necessities to the population. However, one of the most dismaying findings of the report is the dismally low rate of research investments made by the members of the Gulf Cooperation Council (GCC, the economic union of six oil-rich gulf countries Saudi Arabia, Kuwait, Bahrain, Oman, United Arab Emirates and Qatar with a mean per capita GDP of over $30,000 which is comparable to that of the European Union). Saudi Arabia and Kuwait, for example, invest less than 0.1% of their GDP in research and development, far lower than the OIC average of 0.5%.

So how does one go about fixing this dire state of science in the Muslim world? Some fixes are rather obvious, such as increasing the investment in scientific research and education, especially in the OIC countries which have the financial means and are currently lagging far behind in terms of how much funds are made available to improve the scientific infrastructures. Guessoum and Athar also highlight the importance of introducing key metrics to assess scientific productivity and the quality of science education. It is not easy to objectively measure scientific and educational impact, and one can argue about the significance or reliability of any given metric. But without any metrics, it will become very difficult for OIC universities to identify problems and weaknesses, build new research and educational programs and reward excellence in research and teaching. There is also a need for reforming the curriculum so that it shifts its focus from lecture-based teaching, which is so prevalent in OIC universities, to inquiry-based teaching in which students learn science hands-on by experimentally testing hypotheses and are encouraged to ask questions.

In addition to these commonsense suggestions, the task force also put forward a rather intriguing proposition to strengthen scientific research and education: place a stronger emphasis on basic liberal arts in science education. I could not agree more because I strongly believe that exposing science students to the arts and humanities plays a key role in fostering the creativity and curiosity required for scientific excellence. Science is a multi-disciplinary enterprise, and scientists can benefit greatly from studying philosophy, history or literature. A course in philosophy, for example, can teach science students to question their basic assumptions about reality and objectivity, encourage them to examine their own biases, challenge authority and understand the importance of doubt and uncertainty, all of which will likely help them become critical thinkers and better scientists.

However, the specific examples provided by Guessoum and Athar do not necessarily indicate a support for this kind of a broad liberal arts education. They mention the example of the newly founded private Habib University in Karachi which mandates that all science and engineering students also take classes in the humanities, including a two semester course in “hikma” or “traditional wisdom”. Upon reviewing the details of this philosophy course on the university’s website, it seems that the course is a history of Islamic philosophy focused on antiquity and pre-modern texts which date back to the “Golden Age” of Islam. The task force also specifically applauds an online course developed by Ahmed Djebbar. He is an emeritus science historian at the University of Lille in France, which attempts to stimulate scientific curiosity in young pre-university students by relating scientific concepts to great discoveries from the Islamic “Golden Age”. My concern is that this is a rather Islamocentric form of liberal arts education. Do students who have spent all their lives growing up in a Muslim society really need to revel in the glories of a bygone era in order to get excited about science? Does the Habib University philosophy course focus on Islamic philosophy because the university feels that students should be more aware of their cultural heritage or are there concerns that exposing students to non-Islamic ideas could cause problems with students, parents, university administrators or other members of society who could perceive this as an attack on Islamic values? If the true purpose of liberal arts education is to expand the minds of students by exposing them to new ideas, wouldn’t it make more sense to focus on non-Islamic philosophy? It is definitely not a good idea to coddle Muslim students by adulating the “Golden Age” of Islam or using kid gloves when discussing philosophy in order to avoid offending them.

This leads us to a question that is not directly addressed by Guessoum and Osama: How “liberal” is a liberal arts education in countries with governments and societies that curtail the free expression of ideas? The Saudi blogger Raif Badawi was sentenced to 1,000 lashes and 10 years in prison because of his liberal views that were perceived as an attack on religion. Faculty members at universities in Saudi Arabia who teach liberal arts courses are probably very aware of these occupational hazards. At first glance, professors who teach in the sciences may not seem to be as susceptible to the wrath of religious zealots and authoritarian governments. However, the above-mentioned interdisciplinary nature of science could easily spell trouble for free-thinking professors or students. Comments about evolutionary biology, the ethics of genome editing or discussing research on sexuality could all be construed as a violation of societal and religious norms.

The 2010 study Faculty perceptions of academic freedom at a GCC university surveyed professors at an anonymous GCC university (most likely Qatar University since roughly 25% of the faculty members were Qatari nationals and the authors of the study were based in Qatar) regarding their views of academic freedom. The vast majority of faculty members (Arab and non-Arab) felt that academic freedom was important to them and that their university upheld academic freedom. However, in interviews with individual faculty members, the researchers found that the professors were engaging in self-censorship in order to avoid untoward repercussions. Here are some examples of the comments from the faculty at this GCC University:

“I am fully aware of our culture. So, when I suggest any topic in class, I don’t need external censorship except mine.”

“Yes. I avoid subjects that are culturally inappropriate.”

“Yes, all the time. I avoid all references to Israel or the Jewish people despite their contributions to world culture. I also avoid any kind of questioning of their religious tradition. I do this out of respect.”

This latter comment is especially painful for me because one of my heroes who inspired me to become a cell biologist was the Italian Jewish scientist Rita Levi-Montalcini. She revolutionized our understanding of how cells communicate with each other using growth factors. She was also forced to secretly conduct her experiments in her bedroom because the Fascists banned all “non-Aryans” from going to the university laboratory. Would faculty members who teach the discovery of growth factors at this GCC University downplay the role of the Nobel laureate Levi-Montalcini because she was Jewish? We do not know how prevalent this form of self-censorship is in other OIC countries because the research on academic freedom in Muslim-majority countries is understandably scant. Few faculty members would be willing to voice their concerns about government or university censorship and admitting to self-censorship is also not easy.

The task force report on science in the universities of Muslim-majority countries is an important first step towards reforming scientific research and education in the Muslim world. Increasing investments in research and development, using and appropriately acting on carefully selected metrics as well as introducing a core liberal arts curriculum for science students will probably all significantly improve the dire state of science in the Muslim world. However, the reform of the research and education programs needs to also include discussions about the importance of academic freedom. If Muslim societies are serious about nurturing scientific innovation, then they will need to also ensure that scientists, educators and students will be provided with the intellectual freedom that is the cornerstone of scientific creativity.


Guessoum, N., & Osama, A. (2015). Institutions: Revive universities of the Muslim world. Nature, 526(7575), 634-6.

Romanowski, M. H., & Nasser, R. (2010). Faculty perceptions of academic freedom at a GCC university. Prospects, 40(4), 481-497.



 Note: An earlier version of this article was first published on the 3Quarksdaily blog.


Guessoum N, & Osama A (2015). Institutions: Revive universities of the Muslim world. Nature, 526 (7575), 634-6 PMID: 26511563



Romanowski, M., & Nasser, R. (2010). Faculty perceptions of academic freedom at a GCC university PROSPECTS, 40 (4), 481-497 DOI: 10.1007/s11125-010-9166-2