Are American Professors More Responsive to Requests Made by White Male Students?

Less than one fifth of PhD students in the United States will be able to pursue tenure track academic faculty careers once they graduate from their program. Reduced federal funding for research and dwindling support from the institutions for their tenure-track faculty are some of the major reasons for why there is such an imbalance between the large numbers of PhD graduates and the limited availability of academic positions. Upon completing the program, PhD graduates have to consider non-academic job opportunities such as in the industry, government agencies and non-profit foundations but not every doctoral program is equally well-suited to prepare their graduates for such alternate careers. It is therefore essential for prospective students to carefully assess the doctoral program they want to enroll in and the primary mentor they would work with. The best approach is to proactively contact prospective mentors, meet with them and learn about the research opportunities in their group but also discuss how completing the doctoral program would prepare them for their future careers.

students-in-library

The vast majority of professors will gladly meet a prospective graduate student and discuss research opportunities as well as long-term career options, especially if the student requesting the meeting clarifies the goal of the meeting. However, there are cases when students wait in vain for a response. Is it because their email never reached the professor because it got lost in the internet ether or a spam folder? Was the professor simply too busy to respond? A research study headed by Katherine Milkman from the University of Pennsylvania suggests that the lack of response from the professor may in part be influenced by the perceived race or gender of the student.


Milkman and her colleagues conducted a field experiment in which 6,548 professors at the leading US academic institutions (covering 89 disciplines) were contacted via email to meet with a prospective graduate student. Here is the text of the email that was sent to each professor.

Subject Line: Prospective Doctoral Student (On Campus Next

Monday)

Dear Professor [surname of professor inserted here],

I am writing you because I am a prospective doctoral student with considerable interest in your research. My plan is to apply to doctoral programs this coming Fall, and I am eager to learn as much as I can about research opportunities in the meantime.

I will be on campus next Monday, and although I know it is short notice, I was wondering if you might have 10 minutes when you would be willing to meet with me to briefly talk about your work and any possible opportunities for me to get involved in your research. Any time that would be convenient for you would be fine with me, as meeting with you is my first priority during this campus visit.

 Thank you in advance for your consideration.

Sincerely,

[Student’s full name inserted here]

As a professor who frequently receives emails from people who want to work in my laboratory, I feel that the email used in the research study was extremely well-crafted. The student only wants a brief meeting to explore potential opportunities without trying to extract any specific commitment from the professor. The email clearly states the long-term goal – applying to doctoral programs. The tone is also very polite and the student expresses willingness of the prospective student to a to the professor’s schedule. Each email was also personally addressed with the name of the contacted faculty member.

Milkman’s research team then assessed whether the willingness of the professors to respond depended on the gender or ethnicity of the prospective student.  Since this was an experiment, the emails and student names were all fictional but the researchers generated names which most readers would clearly associate with a specific gender and ethnicity.

Here is a list of the names they used:

White male names:  Brad Anderson, Steven Smith

White female names:  Meredith Roberts, Claire Smith

Black male names: Lamar Washington, Terell Jones

Black female names: Keisha Thomas, Latoya Brown

Hispanic male names: Carlos Lopez, Juan Gonzalez

Hispanic female names: Gabriella Rodriguez, Juanita Martinez

Indian male names: Raj Singh, Deepak Patel

Indian female names: Sonali Desai, Indira Shah

Chinese Male names; Chang Huang, Dong Lin

Chinese female names: Mei Chen, Ling Wong

The researchers assessed whether the professors responded (either by agreeing to meet or providing a reason for why they could not meet) at all or whether they simply ignored the email and whether the rate of response depended on the ethnicity/gender of the student.

The overall response rate of the professors ranged from about 60% to 80%, depending on the research discipline as well as the perceived ethnicity and gender of the prospective student. When the emails were signed with names suggesting a white male background of the student, professors were far less likely to ignore the email when compared to those signed with female names or names indicating an ethnic minority background. Professors in the business sciences showed the strongest discrimination in their response rates. They ignored only 18% of emails when it appeared that they had been written by a white male and ignored 38% of the emails if they were signed with names indicating a female gender or ethnic minority background. Professors in the education disciplines ignored 21% of emails with white male names versus 35% with female or minority names. The discrimination gaps in the health sciences (33% vs 43%) and life sciences (32% vs 39%) were smaller but still significant, whereas there was no statistical difference in the humanities professor response rates. Doctoral programs in the fine arts were an interesting exception where emails from apparent white male students were more likely to be ignored (26%) than those of female or minority candidates (only 10%).

The discrimination primarily occurred at the initial response stage. When professors did respond, there was no difference in terms of whether they were able to make time for the student. The researchers also noted that responsiveness discrimination in any discipline was not restricted to one gender or ethnicity. In business doctoral programs, for example, professors were most likely to ignore emails with black female names and Indian male names. Significant discrimination against white female names (when compared to white males names) predicted an increase in discrimination against other ethnic minorities. Surprisingly, the researchers found that having higher representation of female and minority faculty at an institution did not necessarily improve the responsiveness towards requests from potential female or minority students.

This carefully designed study with a large sample size of over 6,500 professors reveals the prevalence of bias against women and ethnic minorities at the top US institutions. This bias may be so entrenched and subconscious that it cannot be remedied by simply increasing the percentage of female or ethnic minority professors in academia. Instead, it is important that professors understand that they may be victims of these biases even if they do not know it. Something as simple as deleting an email from a prospective student because we think that we are too busy to respond may be indicative of an insidious gender or racial bias that we need to understand and confront. Increased awareness and introspection as well targeted measures by institutions are the important first steps to ensure that students receive the guidance and mentorship they need, independent of their gender or ethnic background.

Reference:

Milkman KL, Akinola M, Chugh D. (2015). What Happens Before? A Field Experiment Exploring How Pay and Representation Differentially Shape Bias on the Pathway Into Organizations. Journal of Applied Psychology, 100(6), 1678–1712.

Note: An earlier version of this post was first published on the 3Quarksdaily Blog.

ResearchBlogging.org

Milkman KL, Akinola M, & Chugh D (2015). What happens before? A field experiment exploring how pay and representation differentially shape bias on the pathway into organizations. The Journal of applied psychology, 100 (6), 1678-712 PMID: 25867167

Advertisement

Literature and Philosophy in the Laboratory Meeting

Research institutions in the life sciences engage in two types of regular scientific meet-ups: scientific seminars and lab meetings. The structure of scientific seminars is fairly standard. Speakers give Powerpoint presentations (typically 45 to 55 minutes long) which provide the necessary scientific background, summarize their group’s recent published scientific work and then (hopefully) present newer, unpublished data. Lab meetings are a rather different affair. The purpose of a lab meeting is to share the scientific work-in-progress with one’s peers within a research group and also to update the laboratory heads. Lab meetings are usually less formal than seminars, and all members of a research group are encouraged to critique the presented scientific data and work-in-progress. There is no need to provide much background information because the audience of peers is already well-acquainted with the subject and it is not uncommon to show raw, unprocessed data and images in order to solicit constructive criticism and guidance from lab members and mentors on how to interpret the data. This enables peer review in real-time, so that, hopefully, major errors and flaws can be averted and newer ideas incorporated into the ongoing experiments.

Books

During the past two decades that I have actively participated in biological, psychological and medical research, I have observed very different styles of lab meetings. Some involve brief 5-10 minute updates from each group member; others develop a rotation system in which one lab member has to present the progress of their ongoing work in a seminar-like, polished format with publication-quality images. Some labs have two hour meetings twice a week, other labs meet only every two weeks for an hour. Some groups bring snacks or coffee to lab meetings, others spend a lot of time discussing logistics such as obtaining and sharing biological reagents or establishing timelines for submitting manuscripts and grants. During the first decade of my work as a researcher, I was a trainee and followed the format of whatever group I belonged to. During the past decade, I have been heading my own research group and it has become my responsibility to structure our lab meetings. I do not know which format works best, so I approach lab meetings like our experiments. Developing a good lab meeting structure is a work-in-progress which requires continuous exploration and testing of new approaches. During the current academic year, I decided to try out a new twist: incorporating literature and philosophy into the weekly lab meetings.

My research group studies stem cells and tissue engineeringcellular metabolism in cancer cells and stem cells and the inflammation of blood vessels. Most of our work focuses on identifying molecular and cellular pathways in cells, and we then test our findings in animal models. Over the years, I have noticed that the increasing complexity of the molecular and cellular signaling pathways and the technologies we employ makes it easy to forget the “big picture” of why we are even conducting the experiments. Determining whether protein A is required for phenomenon X and whether protein B is a necessary co-activator which acts in concert with protein A becomes such a central focus of our work that we may not always remember what it is that compels us to study phenomenon X in the first place. Some of our research has direct medical relevance, but at other times we primarily want to unravel the awe-inspiring complexity of cellular processes. But the question of whether our work is establishing a definitive cause-effect relationship or whether we are uncovering yet another mechanism within an intricate web of causes and effects sometimes falls by the wayside. When asked to explain the purpose or goals of our research, we have become so used to directing a laser pointer onto a slide of a cellular model that it becomes challenging to explain the nature of our work without visual aids.

This fall, I introduced a new component into our weekly lab meetings. After our usual round-up of new experimental data and progress, I suggested that each week one lab member should give a brief 15 minute overview about a book they had recently finished or were still reading. The overview was meant to be a “teaser” without spoilers, explaining why they had started reading the book, what they liked about it, and whether they would recommend it to others. One major condition was to speak about the book without any Powerpoint slides! But there weren’t any major restrictions when it came to the book; it could be fiction or non-fiction and published in any language of the world (but ideally also available in an English translation). If lab members were interested and wanted to talk more about the book, then we would continue to discuss it, otherwise we would disband and return to our usual work. If nobody in my lab wanted to talk about a book then I would give an impromptu mini-talk (without Powerpoint) about a topic relating to the philosophy or culture of science. I use the term “culture of science” broadly to encompass topics such as the peer review process and post-publication peer review, the question of reproducibility of scientific findings, retractions of scientific papers, science communication and science policy – topics which have not been traditionally considered philosophy of science issues but still relate to the process of scientific discovery and the dissemination of scientific findings.

One member of our group introduced us to “For Whom the Bell Tolls” by Ernest Hemingway. He had also recently lived in Spain as a postdoctoral research fellow and shared some of his own personal experiences about how his Spanish friends and colleagues talked about the Spanish Civil War. At another lab meeting, we heard about “Sycamore Row” by John Grisham and the ensuring discussion revolved around race relations in Mississippi. I spoke about “A Tale for a Time Being” by Ruth Ozeki and the difficulties that the book’s protagonist faced as an outsider when her family returned to Japan after living in Silicon Valley. I think that the book which got nearly everyone in the group talking was “Far From the Tree: Parents, Children and the Search for Identity” by Andrew Solomon. The book describes how families grapple with profound physical or cognitive differences between parents and children. The PhD student who discussed the book focused on the “Deafness” chapter of this nearly 1000-page tome but she also placed it in the broader context of parenting, love and the stigma of disability. We stayed in the conference room long after the planned 15 minutes, talking about being “disabled” or being “differently abled” and the challenges that parents and children face.

On the weeks where nobody had a book they wanted to present, we used the time to touch on the cultural and philosophical aspects of science such as Thomas Kuhn’s concept of paradigm shifts in “The Structure of Scientific Revolutions“, Karl Popper’s principles of falsifiability of scientific statements, the challenge of reproducibility of scientific results in stem cell biology and cancer research, or the emergence of Pubpeer as a post-publication peer review website. Some of the lab members had heard of Thomas Kuhn’s or Karl Popper’s ideas before, but by coupling it to a lab meeting, we were able to illustrate these ideas using our own work. A lot of 20th century philosophy of science arose from ideas rooted in physics. When undergraduate or graduate students take courses on philosophy of science, it isn’t always easy for them to apply these abstract principles to their own lab work, especially if they pursue a research career in the life sciences. Thomas Kuhn saw Newtonian and Einsteinian theories as distinct paradigms, but what constitutes a paradigm shift in stem cell biology? Is the ability to generate induced pluripotent stem cells from mature adult cells a paradigm shift or “just” a technological advance?

It is difficult for me to know whether the members of my research group enjoy or benefit from these humanities blurbs at the end of our lab meetings. Perhaps they are just tolerating them as eccentricities of the management and maybe they will tire of them. I personally find these sessions valuable because I believe they help ground us in reality. They remind us that it is important to think and read outside of the box. As scientists, we all read numerous scientific articles every week just to stay up-to-date in our area(s) of expertise, but that does not exempt us from also thinking and reading about important issues facing society and the world we live in. I do not know whether discussing literature and philosophy makes us better scientists but I hope that it makes us better people.

 

Note: An earlier version of this article was first published on the 3Quarksdaily blog.

ResearchBlogging.org

Thomas Kuhn (2012). The Structure of Scientific Revolutions University of Chicago Press DOI: 10.7208/chicago/9780226458106.001.0001