Dismantle the Poverty Trap by Nurturing Community Trust

Would you rather receive $100 today or wait for a year and then receive $150? The ability to delay immediate gratification for a potentially greater payout in the future is associated with greater wealth. Several studies have shown that the poor tend to opt for immediate rewards even if they are lower, whereas the wealthy are willing to wait for greater rewards. One obvious reason for this difference is the immediate need for money. If food has to be purchased and electricity or water bills have to be paid, then the instant “reward” is a matter of necessity. Wealthier people can easily delay the reward because their basic needs for food, shelter and clothing are already met.

Unfortunately, escaping from poverty often requires the ability to delay gratification for a greater payout in the future. Classic examples are the pursuit of higher education and the acquisition of specialized professional skills which can lead to better-paying jobs in the future. Attending vocational school, trade school or college paves the way for higher future wages, but one has to forego income during the educational period and even incur additional debt by taking out educational loans. Another example is of delayed gratification is to invest capital – whether it is purchasing a farming tool that increases productivity or investing in the stock market – which in turn can yield greater pay-out. However, if the poor are unable to pursue more education or make other investments that will increase their income, they remain stuck in a vicious cycle of increasing poverty.

Understanding the precise reasons for why people living in poverty often make decisions that seem short-sighted, such as foregoing more education or taking on high-interest short-term loans, is the first step to help them escape poverty. The obvious common-sense fix is to ensure that the basic needs of all citizens – food, shelter, clothing, health and personal safety – are met, so that they no longer have to use all new funds for survival. This is obviously easier in the developed world, but it is not a trivial matter considering that the USA – supposedly the richest country in the world – has an alarmingly high poverty rate. It is estimated that more than 40 million people in the US live in poverty, fearing hunger and eviction from their homes. But just taking care of these basic needs may not be enough to help citizens escape poverty. A recent research study by Jon Jachimowicz at Columbia University and his colleagues investigated “myopic” (short-sighted) decision-making of people with lower income and identified an important new factor: community trust.

The researchers first used an online questionnaire (647 participants) to assess trust and asked participants to choose between a payoff in the near future that is smaller and a larger pay-off in the distant future. They also measured community trust by asking participants to agree or disagree with statements such as “There are advantages to living in my neighborhood” or I would like my child(ren) to be raised in the neighborhood I currently live in”. They found that lower income participants were more likely to act in a short-sighted manner if they had low levels of trust in their communities. In a second online experiment, the researchers recruited roughly 100 participants from each state in the US and assessed their community trust levels. They then obtained real-world data on payday loans – a sign of very short-sighted financial decision-making because people take out cash advances at extraordinarily high interest rates that have to be paid back when they get their paycheck – for each state. They found that the average community trust for each state was related to the use of payday loans. In states with high average community trust ratings, people were less likely to take out these payday loans, and this trend remained even when the researchers took into account unemployment rates and savings rates for each state.

Even though these findings all pointed to a clear relationship between community trust and sound financial decision-making, the results did not prove that increased community trust is an underlying cause that helps improve the soundness of financial decisions. To test this relationship in a real-world setting, the researchers conducted a study in rural Bangladesh by collaborating with an international development organization based in Bangladesh. The vast majority of participants in this study were poor even by Bangladeshi standards, earning less than $1/day per household member. The researchers adapted the community trust questionnaire and the assessment of financial decision-making for the rural population, with live interviewers asking the questions and filling out the responses for the participants. After assessing community trust and the willingness to delay financial rewards for greater payouts in the future, half of the participants received a two year intervention to increase community trust. This intervention involved volunteers from the community that acted as intermediaries between the local government and the rural population, providing input into local governance and community-level decisions (for example in the distribution of social benefits and the allocation of funds for development projects).

At the end of the two year period, participants who had received the community intervention showed significant increases in their community trust levels and they also improved their financial decision-making. They were more likely to forego immediate lower financial rewards for greater future rewards when compared to the villagers who did not receive any special intervention.

By combining correlational data from the United States with an actual real-world intervention to build community trust, the researchers show how important it is to build trust when we want to help fellow humans escape the “poverty trap“. This is just an initial study with a limited group of participants and a narrow intervention that needs to be replicated in other societies and with long-term observation of the results to see how persistent the effects are. But the results should make all of us realize that just creating “jobs, jobs, jobs” is not enough. We need to invest in the infrastructures of communities and help citizens realize that they are respected members of society with a voice. Empowering individuals and ensuring their safety, dignity and human rights are necessary steps if we are serious about battling poverty.


Jachimowicz, J. M., Chafik, S., Munrat, S., Prabhu, J. C., & Weber, E. U. (2017). Community trust reduces myopic decisions of low-income individuals. Proceedings of the National Academy of Sciences, 201617395.

Note: An earlier version of this post was first published on the 3Quarksdaily blog.


Jachimowicz, J., Chafik, S., Munrat, S., Prabhu, J., & Weber, E. (2017). Community trust reduces myopic decisions of low-income individuals Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1617395114

Feel Our Pain: Empathy and Moral Behavior

“It’s empathy that makes us help other people. It’s empathy that makes us moral.” The economist Paul Zak casually makes this comment in his widely watched TED talk about the hormone oxytocin, which he dubs the “moral molecule”. Zak quotes a number of behavioral studies to support his claim that oxytocin increases empathy and trust, which in turn increases moral behavior. If all humans regularly inhaled a few puffs of oxytocin through a nasal spray, we could become more compassionate and caring. It sounds too good to be true. And recent research now suggests that this overly simplistic view of oxytocin, empathy and morality is indeed too good to be true.


Many scientific studies support the idea that oxytocin is a major biological mechanism underlying the emotions of empathy and the formation of bonds between humans. However, inferring that these oxytocin effects in turn make us more moral is a much more controversial statement. In 2011, the researcher Carsten De Dreu and his colleagues at the University of Amsterdam in the Netherlands published the study Oxytocin promotes human ethnocentrism which studied indigenous Dutch male study subjects who in a blinded fashion self-administered either nasal oxytocin or a placebo spray. The subjects then answered questions and performed word association tasks after seeing photographic images of Dutch males (the “in-group”) or images of Arabs and Germans, the “out-group” because prior surveys had shown that the Dutch public has negative views of both Arabs/Muslims and Germans. To ensure that the subjects understood the distinct ethnic backgrounds of the target people shown in the images, they were referred to typical Dutch male names, German names (such as Markus and Helmut) or Arab names (such as Ahmed and Youssef).

Oxytocin increased favorable views and word associations but only towards in-group images of fellow Dutch males. The oxytocin treatment even had the unexpected effect of worsening the views regarding Arabs and Germans but this latter effect was not quite statistically significant. Far from being a “moral molecule”, oxytocin may actually increase ethnic bias in society because it selectively enhances certain emotional bonds. In a subsequent study, De Dreu then addressed another aspect of the purported link between oxytocin and morality by testing the honesty of subjects. The study Oxytocin promotes group-serving dishonesty showed that oxytocin increased cheating in study subjects if they were under the impression that dishonesty would benefit their group. De Dreu concluded that oxytocin does make us less selfish and care more about the interest of the group we belong to.

These recent oxytocin studies not only question the “moral molecule” status of oxytocin but raise the even broader question of whether more empathy necessarily leads to increased moral behavior, independent of whether or not it is related to oxytocin. The researchers Jean Decety and Jason Cowell at the University of Chicago recently analyzed the scientific literature on the link between empathy and morality in their commentary Friends or Foes: Is Empathy Necessary for Moral Behavior?, and find that the relationship is far more complicated than one would surmise. Judges, police officers and doctors who exhibit great empathy by sharing in the emotional upheaval experienced by the oppressed, persecuted and severely ill always end up making the right moral choices – in Hollywood movies. But empathy in the real world is a multi-faceted phenomenon and we use this term loosely, as Decety and Cowell point out, without clarifying which aspect of empathy we are referring to.

Decety and Cowell distinguish at least three distinct aspects of empathy:

1. Emotional sharing, which refers to how one’s emotions respond to the emotions of those around us. Empathy enables us to “feel” the pain of others and this phenomenon of emotional sharing is also commonly observed in non-human animals such as birds or mice.

2. Empathic concern, which describes how we care for the welfare of others. Whereas emotional sharing refers to how we experience the emotions of others, empathic concern motivates us to take actions that will improve their welfare. As with emotional sharing, empathic concern is not only present in humans but also conserved among many non-human species and likely constitutes a major evolutionary advantage.

3. Perspective taking, which – according to Decety and Cowell – is the ability to put oneself into the mind of another and thus imagine what they might be thinking or feeling. This is a more cognitive dimension of empathy and essential for our ability to interact with fellow human beings. Even if we cannot experience the pain of others, we may still be able to understand or envision how they might be feeling. One of the key features of psychopaths is their inability to experience the emotions of others. However, this does not necessarily mean that psychopaths are unable to cognitively imagine what others are thinking. Instead of labeling psychopaths as having no empathy, it is probably more appropriate to specifically characterize them as having a reduced capacity to share in the emotions while maintaining an intact capacity for perspective-taking.

In addition to the complexity of what we call “empathy”, we need to also understand that empathy is usually directed towards specific individuals and groups. De Dreu’s studies demonstrated that oxytocin can make us more pro-social as long as it benefits those who we feel belong to our group but not necessarily those outside of our group. The study Do you feel my pain? Racial group membership modulates empathic neural responses by Xu and colleagues at Peking University used fMRI brain imaging in Chinese and Caucasian study subjects and measured their neural responses to watching painful images. The study subjects were shown images of either a Chinese or a Caucasian face. In the control condition, the depicted image showed a face being poked with a cotton swab. In the pain condition, study subjects were shown a face of a person being poked with a needle attached to syringe. When the researchers measured the neural responses with the fMRI, they found significant activation in the anterior cingulate cortex (ACC) which is part of the neural pain circuit, both for pain we experience ourselves but also for empathic pain we experience when we see others in pain. The key finding in Xu’s study was that ACC activation in response to seeing the painful image was much more profound when the study subject and the person shown in the painful image belonged to the same race.

As we realize that the neural circuits and hormones which form the biological basis of our empathy responses are so easily swayed by group membership then it becomes apparent why increased empathy does not necessarily result in behavior consistent with moral principles. In his essay “Against Empathy“, the psychologist Paul Bloom also opposes the view that empathy should form the basis of morality and that we should unquestioningly elevate empathy to virtue for all:

“But we know that a high level of empathy does not make one a good person and that a low level does not make one a bad person. Being a good person likely is more related to distanced feelings of compassion and kindness, along with intelligence, self-control, and a sense of justice. Being a bad person has more to do with a lack of regard for others and an inability to control one’s appetites.”

I do not think that we can dismiss empathy as a factor in our moral decision-making. Bloom makes a good case for distanced compassion and kindness that does not arise from the more visceral emotion of empathy. But when we see fellow humans and animals in pain, then our initial biological responses are guided by empathy and anger, not the more abstract concept of distanced compassion. What we need is a better scientific and philosophical understanding of what empathy is. Empathic perspective-taking may be a far more robust and reliable guide for moral decision-making than empathic emotions. Current scientific studies on empathy often measure it as an aggregate measure without teasing out the various components of empathy. They also tend to underestimate that the relative contributions of the empathy components (emotion, concern, perspective-taking) can vary widely among cultures and age groups. We need to replace overly simplistic notions such as oxytocin = moral molecule or empathy = good with a more refined view of the complex morality-empathy relationship guided by rigorous science and philosophy.



De Dreu, C. K., Greer, L. L., Van Kleef, G. A., Shalvi, S., & Handgraaf, M. J. (2011). Oxytocin promotes human ethnocentrismProceedings of the National Academy of Sciences, 108(4), 1262-1266.

Decety, J., & Cowell, J. M. (2014). Friends or Foes: Is Empathy Necessary for Moral Behavior?Perspectives on Psychological Science, 9(5), 525-537.

Shalvi, S., & De Dreu, C. K. (2014). Oxytocin promotes group-serving dishonestyProceedings of the National Academy of Sciences, 111(15), 5503-5507.

Xu, X., Zuo, X., Wang, X., & Han, S. (2009). Do you feel my pain? Racial group membership modulates empathic neural responsesThe Journal of Neuroscience, 29(26), 8525-8529.



Note: An earlier version of this article was first published on the 3Quarksdaily blog.







De Dreu, C., Greer, L., Van Kleef, G., Shalvi, S., & Handgraaf, M. (2011). Oxytocin promotes human ethnocentrism Proceedings of the National Academy of Sciences, 108 (4), 1262-1266 DOI: 10.1073/pnas.1015316108


Decety J, & Cowell JM (2014). Friends or Foes: Is Empathy Necessary for Moral Behavior? Perspectives on psychological science : a journal of the Association for Psychological Science, 9 (5), 525-37 PMID: 25429304


Shalvi S, & De Dreu CK (2014). Oxytocin promotes group-serving dishonesty. Proceedings of the National Academy of Sciences of the United States of America, 111 (15), 5503-7 PMID: 24706799


Xu X, Zuo X, Wang X, & Han S (2009). Do you feel my pain? Racial group membership modulates empathic neural responses. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29 (26), 8525-9 PMID: 19571143

Murder Your Darling Hypotheses But Do Not Bury Them

“Whenever you feel an impulse to perpetrate a piece of exceptionally fine writing, obey it—whole-heartedly—and delete it before sending your manuscript to press. Murder your darlings.”

Sir Arthur Quiller-Couch (1863–1944). On the Art of Writing. 1916


Murder your darlings. The British writer Sir Arthur Quiller Crouch shared this piece of writerly wisdom when he gave his inaugural lecture series at Cambridge, asking writers to consider deleting words, phrases or even paragraphs that are especially dear to them. The minute writers fall in love with what they write, they are bound to lose their objectivity and may not be able to judge how their choice of words will be perceived by the reader. But writers aren’t the only ones who can fall prey to the Pygmalion syndrome. Scientists often find themselves in a similar situation when they develop “pet” or “darling” hypotheses.

Hypothesis via Shutterstock
Hypothesis via Shutterstock

How do scientists decide when it is time to murder their darling hypotheses? The simple answer is that scientists ought to give up scientific hypotheses once the experimental data is unable to support them, no matter how “darling” they are. However, the problem with scientific hypotheses is that they aren’t just generated based on subjective whims. A scientific hypothesis is usually put forward after analyzing substantial amounts of experimental data. The better a hypothesis is at explaining the existing data, the more “darling” it becomes. Therefore, scientists are reluctant to discard a hypothesis because of just one piece of experimental data that contradicts it.

In addition to experimental data, a number of additional factors can also play a major role in determining whether scientists will either discard or uphold their darling scientific hypotheses. Some scientific careers are built on specific scientific hypotheses which set apart certain scientists from competing rival groups. Research grants, which are essential to the survival of a scientific laboratory by providing salary funds for the senior researchers as well as the junior trainees and research staff, are written in a hypothesis-focused manner, outlining experiments that will lead to the acceptance or rejection of selected scientific hypotheses. Well written research grants always consider the possibility that the core hypothesis may be rejected based on the future experimental data. But if the hypothesis has to be rejected then the scientist has to explain the discrepancies between the preferred hypothesis that is now falling in disrepute and all the preliminary data that had led her to formulate the initial hypothesis. Such discrepancies could endanger the renewal of the grant funding and the future of the laboratory. Last but not least, it is very difficult to publish a scholarly paper describing a rejected scientific hypothesis without providing an in-depth mechanistic explanation for why the hypothesis was wrong and proposing alternate hypotheses.

For example, it is quite reasonable for a cell biologist to formulate the hypothesis that protein A improves the survival of neurons by activating pathway X based on prior scientific studies which have shown that protein A is an activator of pathway X in neurons and other studies which prove that pathway X improves cell survival in skin cells. If the data supports the hypothesis, publishing this result is fairly straightforward because it conforms to the general expectations. However, if the data does not support this hypothesis then the scientist has to explain why. Is it because protein A did not activate pathway X in her experiments? Is it because in pathway X functions differently in neurons than in skin cells? Is it because neurons and skin cells have a different threshold for survival? Experimental results that do not conform to the predictions have the potential to uncover exciting new scientific mechanisms but chasing down these alternate explanations requires a lot of time and resources which are becoming increasingly scarce. Therefore, it shouldn’t come as a surprise that some scientists may consciously or subconsciously ignore selected pieces of experimental data which contradict their darling hypotheses.

Let us move from these hypothetical situations to the real world of laboratories. There is surprisingly little data on how and when scientists reject hypotheses, but John Fugelsang and Kevin Dunbar at Dartmouth conducted a rather unique study “Theory and data interactions of the scientific mind: Evidence from the molecular and the cognitive laboratory” in 2004 in which they researched researchers. They sat in at scientific laboratory meetings of three renowned molecular biology laboratories at carefully recorded how scientists presented their laboratory data and how they would handle results which contradicted their predictions based on their hypotheses and models.

In their final analysis, Fugelsang and Dunbar included 417 scientific results that were presented at the meetings of which roughly half (223 out of 417) were not consistent with the predictions. Only 12% of these inconsistencies lead to change of the scientific model (and thus a revision of hypotheses). In the vast majority of the cases, the laboratories decided to follow up the studies by repeating and modifying the experimental protocols, thinking that the fault did not lie with the hypotheses but instead with the manner how the experiment was conducted. In the follow up experiments, 84 of the inconsistent findings could be replicated and this in turn resulted in a gradual modification of the underlying models and hypotheses in the majority of the cases. However, even when the inconsistent results were replicated, only 61% of the models were revised which means that 39% of the cases did not lead to any significant changes.

The study did not provide much information on the long-term fate of the hypotheses and models and we obviously cannot generalize the results of three molecular biology laboratory meetings at one university to the whole scientific enterprise. Also, Fugelsang and Dunbar’s study did not have a large enough sample size to clearly identify the reasons why some scientists were willing to revise their models and others weren’t. Was it because of varying complexity of experiments and models? Was it because of the approach of the individuals who conducted the experiments or the laboratory heads? I wish there were more studies like this because it would help us understand the scientific process better and maybe improve the quality of scientific research if we learned how different scientists handle inconsistent results.

In my own experience, I have also struggled with results which defied my scientific hypotheses. In 2002, we found that stem cells in human fat tissue could help grow new blood vessels. Yes, you could obtain fat from a liposuction performed by a plastic surgeon and inject these fat-derived stem cells into animal models of low blood flow in the legs. Within a week or two, the injected cells helped restore the blood flow to near normal levels! The simplest hypothesis was that the stem cells converted into endothelial cells, the cell type which forms the lining of blood vessels. However, after several months of experiments, I found no consistent evidence of fat-derived stem cells transforming into endothelial cells. We ended up publishing a paper which proposed an alternative explanation that the stem cells were releasing growth factors that helped grow blood vessels. But this explanation was not as satisfying as I had hoped. It did not account for the fact that the stem cells had aligned themselves alongside blood vessel structures and behaved like blood vessel cells.

Even though I “murdered” my darling hypothesis of fat –derived stem cells converting into blood vessel endothelial cells at the time, I did not “bury” the hypothesis. It kept ruminating in the back of my mind until roughly one decade later when we were again studying how stem cells were improving blood vessel growth. The difference was that this time, I had access to a live-imaging confocal laser microscope which allowed us to take images of cells labeled with red and green fluorescent dyes over long periods of time. Below, you can see a video of human bone marrow mesenchymal stem cells (labeled green) and human endothelial cells (labeled red) observed with the microscope overnight. The short movie compresses images obtained throughout the night and shows that the stem cells indeed do not convert into endothelial cells. Instead, they form a scaffold and guide the endothelial cells (red) by allowing them to move alongside the green scaffold and thus construct their network. This work was published in 2013 in the Journal of Molecular and Cellular Cardiology, roughly a decade after I had been forced to give up on the initial hypothesis. Back in 2002, I had assumed that the stem cells were turning into blood vessel endothelial cells because they aligned themselves in blood vessel like structures. I had never considered the possibility that they were scaffold for the endothelial cells.

This and other similar experiences have lead me to reformulate the “murder your darlings” commandment to “murder your darling hypotheses but do not bury them”. Instead of repeatedly trying to defend scientific hypotheses that cannot be supported by emerging experimental data, it is better to give up on them. But this does not mean that we should forget and bury those initial hypotheses. With newer technologies, resources or collaborations, we may find ways to explain inconsistent results years later that were not previously available to us. This is why I regularly peruse my cemetery of dead hypotheses on my hard drive to see if there are ways of perhaps resurrecting them, not in their original form but in a modification that I am now able to test.




Fugelsang, J., Stein, C., Green, A., & Dunbar, K. (2004). Theory and Data Interactions of the Scientific Mind: Evidence From the Molecular and the Cognitive Laboratory. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 58 (2), 86-95 DOI: 10.1037/h0085799


Note: An earlier version of this article first appeared on 3Quarksdaily.

Does Thinking About God Increase Our Willingness to Make Risky Decisions?

There are at least two ways of how the topic of trust in God is broached in Friday sermons that I have attended in the United States. Some imams lament the decrease of trust in God in the age of modernity. Instead of trusting God that He is looking out for the believers, modern day Muslims believe that they can control their destiny on their own without any Divine assistance. These imams see this lack of trust in God as a sign of weakening faith and an overall demise in piety. But in recent years, I have also heard an increasing number of sermons mentioning an important story from the Muslim tradition. In this story, Prophet Muhammad asked a Bedouin why he was leaving his camel untied and thus taking the risk that this valuable animal might wander off and disappear. When the Bedouin responded that he placed his trust in God who would ensure that the animal stayed put, the Prophet told him that he still needed to first tie up his camel and then place his trust in God. Sermons referring to this story admonish their audience to avoid the trap of fatalism. Just because you trust God does not mean that it obviates the need for rational and responsible action by each individual.


It is much easier for me to identify with the camel-tying camp because I find it rather challenging to take risks exclusively based on the trust in an inscrutable and minimally communicative entity. Both, believers and non-believers, take risks in personal matters such as finance or health. However, in my experience, many believers who make a risky financial decision or take a health risk by rejecting a medical treatment backed by strong scientific evidence tend to invoke the name of God when explaining why they took the risk. There is a sense that God is there to back them up and provide some security if the risky decision leads to a detrimental outcome. It would therefore not be far-fetched to conclude that invoking the name of God may increase risk-taking behavior, especially in people with firm religious beliefs. Nevertheless, psychological research in the past decades has suggested the opposite: Religiosity and reminders of God seem to be associated with a reduction in risk-taking behavior.

Daniella Kupor and her colleagues at Stanford University have recently published the paper “Anticipating Divine Protection? Reminders of God Can Increase Nonmoral Risk Taking” which takes a new look at the link between invoking the name of God and risky behaviors. The researchers hypothesized that reminders of God may have opposite effects on varying types of risk-taking behavior. For example, risk-taking behavior that is deemed ‘immoral’ such as taking sexual risks or cheating may be suppressed by invoking God, whereas taking non-moral risks, such as making risky investments or sky-diving, might be increased because reminders of God provide a sense of security. According to Kupor and colleagues, it is important to classify the type of risky behavior in relation to how society perceives God’s approval or disapproval of the behavior. The researchers conducted a variety of experiments to test this hypothesis using online study participants.

One of the experiments involved running ads on a social media network and then assessing the rate of how often the social media users clicked on slightly different wordings of the ad texts. The researchers ran the ads 452,051 times on accounts registered to users over the age of 18 years residing in the United States. The participants either saw ads for non-moral risk-taking behavior (skydiving), moral risk-taking behavior (bribery) or a control behavior (playing video games) and each ad came either in a ‘God version’ or a standard version.

Here are the two versions of the skydiving ad (both versions had a picture of a person skydiving):

Amazing Skydiving!

God knows what you are missing! Find skydiving near you. Click here, feel the thrill!

Amazing Skydiving!

You don’t know what you are missing! Find skydiving near you. Click here, feel the thrill!

The percentage of users who clicked on the skydiving ad in the ‘God version’ was twice as high as in the group which saw the standard “You don’t know what you are missing” phrasing! One explanation for the significantly higher ad success rate is that “God knows….” might have struck the ad viewers as being rather unusual and piqued their curiosity. Instead of this being a reflection of increased propensity to take risks, perhaps the viewers just wanted to find out what was meant by “God knows…”. However, the response to the bribery ad suggests that it isn’t just mere curiosity. These are the two versions of the bribery ad (both versions had an image of two hands exchanging money):

Learn How to Bribe!

God knows what you are missing! Learn how to bribe with little risk of getting caught!

Learn How to Bribe!

You don’t know what you are missing! Learn how to bribe with little risk of getting caught!

In this case, the ‘God version’ cut down the percentage of clicks to less than half of the standard version. The researchers concluded that invoking the name of God prevented the users from wanting to find out more about bribery because they consciously or subconsciously associated bribery with being immoral and rejected by God.

These findings are quite remarkable because they suggest that a a single mention of the word ‘God’ in an ad can have opposite effects on two different types of risk-taking, the non-moral thrill of sky-diving versus the immoral risk of taking bribes.
Clicking on an ad for a potentially risky behavior is not quite the same as actually engaging in that behavior. This is why the researchers also conducted a separate study in which participants were asked to answer a set of questions after viewing certain colors. Participants could choose between Option 1 (a short 2 minute survey and receiving an additional 25 cents as a reward) or Option 2 (four minute survey, no additional financial incentive). The participants were also informed that Option 1 was more risky with the following label:


Eye Hazard: Option 1 not for individuals under 18. The bright colors in this task may damage the retina and cornea in the eyes. In extreme cases it can also cause macular degeneration.

In reality, neither of the two options was damaging to the eyes of the participants but the participants did not know this. This set-up allowed the researchers to assess the likelihood of the participants taking the risk of potentially injurious light exposure to their eyes. To test the impact of God reminders, the researchers assigned the participants to read one of two texts, both of which were adapted from Wikipedia, before deciding on Option 1 or Option 2:

Text used for participants in the control group:

“In 2006, the International Astronomers’ Union passed a resolution outlining three conditions for an object to be called a planet. First, the object must orbit the sun; second, the object must be a sphere; and third, it must have cleared the neighborhood around its orbit. Pluto does not meet the third condition, and is thus not a planet.”


Text used for the participants in the ‘God reminder’ group:

“God is often thought of as a supreme being. Theologians have described God as having many attributes, including omniscience (infinite knowledge), omnipotence (unlimited power), omnipresence (present everywhere), and omnibenevolence (perfect goodness). God has also been conceived as being incorporeal (immaterial), a personal being, and the “greatest conceivable existent.”

As hypothesized by the researchers, a significantly higher proportion of participants chose the supposedly harmful Option 1 in the ‘God reminder’ group (96%) than in the control group (84%). Reading a single paragraph about God’s attributes was apparently sufficient to lull more participants into the risk of exposing their eyes to potential harm. The overall high percentage of participants choosing Option 1 even in the control condition is probably due to the fact that it offered a greater financial reward (although it seems a bit odd that participants were willing to sell out their retinas for a quarter, but maybe they did not really take the risk very seriously).
A limitation of the study is that it does not provide any information on whether the impact of mentioning God was dependent on the religious beliefs of the participants. Do ‘God reminders’ affect believers as well atheists and agnostics or do they only work in people who clearly identify with a religious tradition? Another limitation is that even though many of the observed differences between the ‘God condition’ and the control conditions were statistically significant, the actual differences in numbers were less impressive. For example, in the sky-diving ad experiment, the click-through rate was about 0.03% in the standard ad and 0.06% in the ‘God condition’. This is a doubling but how meaningful is this doubling when the overall click rates are so low? Even the difference between the two groups who read the Wikipedia texts and chose Option 1 (96% vs. 84%) does not seem very impressive. However, one has to bear in mind that all of these interventions were very subtle – inserting a single mention of God into a social media ad or asking participants to read a single paragraph about God.

People who live in societies which are suffused with religion such as the United States or Pakistan are continuously reminded of God, whether they glance at their banknotes, turn on the TV or take a pledge of allegiance in school. If the mere mention of God in an ad can already sway some of us to increase our willingness to take risks, what impact does the continuous barrage of God mentions have on our overall risk-taking behavior? Despite its limitations, the work by Kupor and colleagues provides a fascinating new insight on the link between reminders of God and risk-taking behavior. By demonstrating the need to replace blanket statements regarding the relationship between God, religiosity and risk-taking with a more subtle distinction between moral and non-moral risky behaviors, the researchers are paving the way for fascinating future studies on how religion and mentions of God influence human behavior and decision-making.



Kupor DM, Laurin L, Levav J. “Anticipating Divine Protection? Reminders of God Can Increase Nonmoral Risk Taking” Psychological Science (2015) doi: 10.1177/0956797614563108


Note: An earlier version of this article was first published on the 3Quarksdaily Blog.