Does Human Fat Contain Stem Cells?

Aeon Magazine recently published my longform essay on our research with human liposuction samples and our attempts to use fat for regenerative and therapeutic purposes. Many research groups, including our own group, have been able to isolate stem cells from human fat. However, when it came to using this cells for treating cardiovascular disease, the cells behaved in a manner that we had not anticipated.

Undifferentiated mesenchymal stem cells (left) and their fat neighbors (right)
Undifferentiated mesenchymal stem cells (left) and their fat neighbors (right) – From our PLOS One paper

We were unable to convert them into heart muscle cells or blood vessel endothelial cells, but we found that they could help build large networks of blood vessels by releasing important growth factors. Within a few years of our initial publication, clinical trials with patients with blocked arteries or legs were already being planned, and are currently underway.

We decided to call the cells “adipose stromal cells” because we wanted to emphasize that they were acting as a “stroma” (i.e. supportive environment for blood vessels) and not necessarily as stem cells (i.e. cells that convert from an undifferentiated state into mature cell types). In other contexts, these same cells were indeed able to act like “stem cells”, because they could be converted into bone-forming or cartilage-forming cells, thus showing the enormous versatility and value of the cells that reside within our fat tissues.

The answer to the question “Does Human Fat Contain Stem Cells?” is Yes, but these cells cannot be converted into all desired tissues. Instead, they have important supportive functions that can be used to engineer new blood vessels, which is a critical step in organ engineering.

In addition to describing our scientific work, the essay also mentions the vagaries of research, the frustrations I had as a postdoctoral fellow when my results were not turning out as I had expected, and how some predatory private clinics are already marketing “fat-derived stem cell therapies” to paying customers, even though the clinical results are still rather preliminary.


For the readers who want to dig a bit deeper, here are some references and links:


1. The original paper by Patricia Zuk and colleagues which described the presence of stem cells in human liposuction fat:

Zuk, P et al (2001) “Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies


2. Our work on how the cells can help grow blood vessels by releasing proteins:

Rehman, J et al (2004) “Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells


3. Preliminary findings from ongoing clinical studies in which heart attack patients receive infusions of fat derived cells into their hearts to improve heart function and blood flow to the heart:

Houtgraf, J et al (2012) “First Experience in Humans Using Adipose Tissue–Derived Regenerative Cells in the Treatment of Patients With ST-Segment Elevation Myocardial Infarction


4. Preliminary results from an ongoing trial using the fat-derived cells in patients with severe blockages of leg arteries:

Bura, A et al (2014) “Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia


5. Example of how “cell therapies” (in this case bone marrow cells) are sometimes marketed as “stem cells” but hardly contain any stem cells:

The Largest Cell Therapy Trial in Heart Attack Patients Uses Hardly Any Stem Cells


6. The major scientific society devoted to studying the science of fat and its cells as novel therapies is called International Federation for Adipose Therapeutics and Science (IFATS).

I am not kidding, it is I-FATS!

Explore their website if you want to learn about all the exciting new research with fat derived cells.


7. Some of our newer work on how bone marrow mesenchymal stem cells turn into fat cells and what role their metabolism plays during this process:

Zhang, Y et al (2013) “Mitochondrial Respiration Regulates Adipogenic Differentiation of Human Mesenchymal Stem Cells

Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, & Hedrick MH (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue engineering, 7 (2), 211-28 PMID: 11304456

Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, & March KL (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109 (10), 1292-8 PMID: 14993122

Stemming the Flow: Using Stem Cells To Treat Urinary Bladder Dysfunction

Neurogenic bladder is a disorder which occurs in spinal cord diseases such as spina bifida and is characterized by an inability of the nervous system to properly control the urinary bladder and the muscle tissue contained in the bladder wall. This can lead to spasms and a build-up of pressure in the bladder, often resulting in urinary incontinence. Children with spina bifida and neurogenic bladder often feel urges to urinate after drinking comparatively small amounts of liquid and they can also involuntarily leak urine. This is a source of a lot of emotional stress, especially in social settings such as when they are around friends or in school. If untreated, the long-standing and frequent pressure build-up in the bladder can have even more devastating effects such as infections or kidney damage.

Current treatments for neurogenic bladder involve surgeries which reconstruct and increase the size of the bladder by using tissue patches obtained from the bowel of the patient. Since such a gastrointestinal patch is derived from the patient’s own body, it is less likely to elicit an immune response and these intestinal tissue patches tend to be strong enough to withstand the pressures in the bladder. Unfortunately, the incompatibility of intestinal tissue and bladder tissue can lead to long-term complications, such as urinary tract infections, formation of urinary tract stones and in some rare cases even cancers. For this reason, researchers have been searching for newer safer patches which resemble the actual bladder wall.


A team of researchers at Northwestern University recently published a study which used stem cells of children with spina bifida to generate tissue patches that could be used for bladder surgery. In the paper “Cotransplantation with specific populations of spina bifida bone marrow stem/progenitor cells enhances urinary bladder regeneration” published in the Proceedings of the National Academy of Sciences (online publication on February 19, 2013), Arun Sharma and colleagues isolated two types of cells from the bone marrow of children with spina bifida: Mesenchymal stem cells (MSCs) and CD34+ cells (stem and progenitor cells which usually give rise to blood cells). They then coated a special polymer scaffold called POC with the cells and implanted this newly created patch into a rat bladder after performing a bladder augmentation surgery, similar to what is performed in patients with spina bifida. They then assessed the survival and formation of human muscle tissue on the implanted patch. When both human cell types (MSCs and CD34+) were combined, more than half of the implanted patch was covered with muscle tissue, four weeks after the implantation. If they only used CD34+ cells, they found that only a quarter of the patch was covered with muscle tissue. What is even more remarkable is that in addition to the newly formed muscle tissue, the implanted patch also showed evidence of some peripheral nerve growth and of blood vessel formation, both of which are found in healthy, normal bladder walls. These findings suggest that a patient’s own bone marrow stem cells can be used to help construct a tissue patch which could be used for bladder augmentation surgeries. The observation of some nerve growth in the implanted patch is also an exciting finding. One could conceivably try to re-connect the reconstructed bladder tissue with the main nervous system, but its success would largely depend on the severity of the neurologic disease.

One has to keep in mind that there are some key limitations to this study. The authors of the paper believe that the newly formed muscle tissue on the implanted patches was all derived from the patients’ bone marrow stem cells. However, there were no experiments performed to convincingly demonstrate this. The authors report that in previous studies, merely implanting the empty POC scaffold without any human stem cells resulted in 20% coverage with muscle tissue. This suggests that a big chunk of the newly formed muscle tissue is actually derived from the host rat and not from human stem cells. The authors also did not compare the effectiveness of this newly formed stem cell patch to the currently used intestinal patches, and there is no assessment of whether the newly formed muscle tissue on the reconstructed bladder is less prone to spasms and involuntary contractions. Lastly, all the in vivo testing of the tissue patches was performed in rats without neurogenic bladder and it is possible that the highly successful formation of muscle tissue may have been diminished if the animals had a neurologic disease.

A second study published in PLOS One took a different approach. In “Evaluation of Silk Biomaterials in Combination with Extracellular Matrix Coatings for Bladder Tissue Engineering with Primary and Pluripotent Cells” (online publication February 7, 2013), Debra Franck and colleagues describe how they coated a scaffold consisting of silk threads with extracellular matrix proteins such as fibronectin. Instead of using bone marrow stem cells, they converted induced pluripotent stem cells into the smooth muscle cells that are typically found inside the bladder wall and placed these newly differentiated cells on the silk scaffold. The induced pluripotent stem cells (iPSCs) used by Franck and colleagues can be generated from a patient’s own skin cells which reduces the risk of being rejected by a patient’s immune system. The advantage of this approach is that it starts out with a pure and truly pluripotent stem cell population, which is easier to direct and control than bone marrow stem cells. There are also a few important limitations to this second study. Franck and colleagues used mouse pluripotent stem cells and it is not clear that their approach would necessarily work with human pluripotent stem cells. They also did not test the function of these differentiated cells on the silk scaffold to check if they actually behaved like true bladder wall smooth muscle cells. Unlike the first study, Franck and colleagues did not evaluate the newly created patch in an animal model.

Both studies are purely experimental and much additional work is needed before they can be tested in humans, but both show promising new approaches to help improve bladder dysfunction. It is heartening to see that researchers are developing new cell-based therapies to help children and adults who suffer from neurogenic bladder. The results from these two experimental studies are still too preliminary to predict whether cell-based therapies can be successfully used in patients, but they represent important first steps.


Image credit: Taken from Franck D, Gil ES, Adam RM, Kaplan DL, Chung YG, et al. (2013) Evaluation of Silk Biomaterials in Combination with Extracellular Matrix Coatings for Bladder Tissue Engineering with Primary and Pluripotent Cells. PLoS ONE 8(2): e56237. doi:10.1371/journal.pone.0056237- Figure 6 B: Differentiated mouse induced pluripotent stem cells cultured on fibronectin-coated silk matrices show protein markers typically found in bladder smooth muscle cells.
Franck, D., Gil, E., Adam, R., Kaplan, D., Chung, Y., Estrada, C., & Mauney, J. (2013). Evaluation of Silk Biomaterials in Combination with Extracellular Matrix Coatings for Bladder Tissue Engineering with Primary and Pluripotent Cells PLoS ONE, 8 (2) DOI: 10.1371/journal.pone.0056237

Recent Study Raises Questions About Using Adult Stem Cells for Chronic Heart Disease

A recent clinical study (POSEIDON Randomized Trial) investigated the effects of transplanting bone marrow derived adult stem cells into patients with known heart disease. The results were presented at the 2012 American Heart Association (AHA) meeting in Los Angeles and also published in the article “Comparison of Allogeneic vs Autologous Bone Marrow–Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy: The POSEIDON Randomized Trial“. The article by Dr. Joshua Hare and colleagues appeared in the online edition of the Journal of the American Medical Association on November 6, 2012.

The primary goal of the study was to compare whether adult stem cells from other donors (allogeneic cells) are just as safe as the stem cells derived from the patients’ own bone marrow (autologous cells). Thirty patients with a prior heart attack and reduced cardiac function received either allogeneic or autologous cells. The injected cells were mesenchymal stem cells (MSCs), an adult stem cell type that resides within the bone marrow and primarily gives rise to bone, fat or cartilage tissue. MSCs are quite distinct from hematopoietic stem cells (HSCs) which are also present in the bone marrow but give rise to blood cells. In the POSEIDON study, patients underwent a cardiac catheterization and the MSCs were directly injected into the heart muscle. Various measurements of safety and cardiac function were performed before and up to one year after the cell injection.

The good news is that in terms of safety, there was no significant difference when either autologous or allogeneic MSCs were used. Within the first month after the cell injection, only one patient in each group was hospitalized for what may have been a major treatment related side effect. In the long-run, the number of adverse events was very similar in both groups. The implication of this finding is potentially significant. It suggests that one can use off-the-shelf adult stem cells from a healthy donor to treat a patient with heart disease. This is much more practical than having to isolate the bone marrow from a patient and wait for 4-8 weeks to expand his or her own bone marrow stem cells.

The disappointing news from this study is that one year following the stem cell injection, there was minimal improvement in the cardiac function of the patients. The ejection fraction of the heart is an indicator of how well the heart contracts and the normal range for healthy patients is roughly 55-60%. In the current study, patients who received allogeneic cells started out with an average ejection fraction of 27.9% and the value increased to 29.5% one year after the cell injection. The patients who received autologous cells had a mean ejection fraction of 26.2% prior to the cell transplantation and a mean ejection fraction of 28.5% one year after the stem cell therapy. In both groups, the improvement was minimal and not statistically significant. A different measure of the functional capacity of the heart is the assessment of the peak oxygen consumption. This measurement correlates well with the survival of a patient and is also used to help decide if a patient needs a heart transplant. There was no significant change in the peak oxygen consumption in either of the two groups of patients, one year after the treatment. Some other measures did indicate a minor improvement, such as the reduction of the heart attack scar size in both patient groups but this was apparently not enough to improve the ejection fraction or oxygen consumption.

One of the key issues in interpreting the results is the fact that there was no placebo control group. The enrollment in a research study and the cell injection procedure itself could have contributed to minor non-specific or placebo benefits that were unrelated to the stem cell treatments. One odd finding was that the patient sub-group which showed a statistically significant improvement in ejection fraction was the group which received the least stem cells. If the observed minor benefits were indeed the result of the injected cells turning into cardiac cells, one would expect that more cells would lead to greater functional improvement. The efficacy of the lowest number of cells points to non-specific effects from the cell injection or to an unknown mechanism by which the injected cells activate cardiac repair without necessarily becoming cardiac cells themselves.

The results of this study highlight some key problems with current attempts to use adult stem cells in cardiovascular patients. Many studies have shown that adult stem cells have a very limited differentiation potential and that they do not really turn into beating, functional heart cells. Especially in patients with established, long-standing heart disease, the utility of adult stem cells may be very limited. The damage that the heart of these patients has suffered is probably so severe that they need stem cells which can truly regenerate the heart. Examples of such regenerative stem cells are embryonic stem cells or induced pluripotent stem cells which have a very broad differentiation potential. Cardiac stem cells, which exist in very low numbers within the heart itself, are also able to become functional heart cells. Each of these three cell types is challenging to use in patients, which is why many current studies have resorted to using the more convenient adult bone marrow stem cells.

Human embryonic stem cells can develop into functional heart cells, but there have been numerous ethical and regulatory concerns about using them. Induced pluripotent stem cells (iPSCs) appear to have the capacity to become functional heart cells, similar to what has been observed for human embryonic stem cells. However, iPSCs were only discovered six years ago and we still have a lot to learn more about how they work. Lastly, cardiac stem cells are very promising but isolating them from the heart requires an additional biopsy procedure which can also carry some risks for the patients. Hopefully, the fact that adult bone marrow stem cells showed only minimal benefits in the POSEIDON study will encourage researchers to use these alternate stem cells (even if they are challenging to use) instead of adult bone marrow stem cells for future studies in patients with chronic heart disease.

One factor that makes it difficult to interpret the POSEIDON trial is the lack of a placebo control group. This is a major problem for many stem cell studies, because it is not easy to ethically justify a placebo group for invasive procedures such as a stem cell implantation. The placebo patients would also have to receive a cardiac catheterization and injections into the heart tissue, but instead of stem cells, the injections would just contain a cell-free liquid solution. Scientifically, such a placebo control group is necessary to determine whether the stem cells are effective, but this scientific need has to be weighed against the ethics of a “placebo” heart catheterization. Even if one were to ethically justify a “placebo” heart catheterization, it may not be easy to recruit volunteer patients for the study if they knew that they had a significant chance of receiving “empty” injections into their heart muscle.

There is one ongoing study which is very similar in design to the POSEIDON trial and it does contain a placebo group: The TAC-HFT trial. The results of this trial are not yet available, but they may have a major impact on whether or not bone marrow stem cells have a clinical future. If the TAC-HFT trial shows that the bone marrow stem cell treatment for patients with chronic heart disease has no benefits or only minor benefits when compared to the placebo group, it will become increasingly difficult to justify the use of these cells in heart patients.

In summary, the POSEIDON trial has shown that treating chronic heart disease patients with bone marrow derived stem cells is not yet ready for prime time. Bone marrow cells from strangers may be just as safe as one’s own cells, but if bone marrow stem cells are not very effective for treating chronic heart disease, than it may just be a moot point.


Image credit: Wikipedia