The “Invisible Web” Undermines Health Information Privacy

“The goal of privacy is not to protect some stable self from erosion but to create boundaries where this self can emerge, mutate, and stabilize. What matters here is the framework— or the procedure— rather than the outcome or the substance. Limits and constraints, in other words, can be productive— even if the entire conceit of “the Internet” suggests otherwise.

         Evgeny Morozov in “To Save Everything, Click Here: The Folly of Technological Solutionism

 

We cherish privacy in health matters because our health has such a profound impact on how we interact with other humans. If you are diagnosed with an illness, it should be your right to decide when and with whom you share this piece of information. Perhaps you want to hold off on telling your loved ones because you are worried about how it might affect them. Maybe you do not want your employer to know about your diagnosis because it could get you fired. And if your bank finds out, they could deny you a mortgage loan. These and many other reasons have resulted in laws and regulations that protect our personal health information. Family members, employers and insurances have no access to your health data unless you specifically authorize it. Even healthcare providers from two different medical institutions cannot share your medical information unless they can document your consent.

Health Information Privacy via Shutterstock
Health Information Privacy via Shutterstock

The recent study “Privacy Implications of Health Information Seeking on the Web” conducted by Tim Libert at the Annenberg School for Communication (University of Pennsylvania) shows that we have a for more nonchalant attitude regarding health privacy when it comes to personal health information on the internet. Libert analyzed 80,142 health-related webpages that users might come across while performing online searches for common diseases. For example, if a user uses Google to search for information on HIV, the Center for Disease Control and Prevention (CDC) webpage on HIV/AIDS (http://www.cdc.gov/hiv/) is one of the top hits and users will likely click on it. The information provided by the CDC will likely provide solid advice based on scientific results but Libert was more interested in investigating whether visits to the CDC website were being tracked. He found that by visiting the CDC website, information of the visit is relayed to third-party corporate entities such as Google, Facebook and Twitter. The webpage contains “Share” or “Like” buttons which is why the URL of the visited webpage (which contains the word “HIV”) is passed on to them – even if the user does not explicitly click on the buttons.

Libert found that 91% of health-related pages relay the URL to third parties, often unbeknownst to the user, and in 70% of the cases, the URL contains sensitive information such as “HIV” or “cancer” which is sufficient to tip off these third parties that you have been searching for information related to a specific disease. Most users probably do not know that they are being tracked which is why Libert refers to this form of tracking as the “Invisible Web” which can only be unveiled when analyzing the hidden http requests between the servers. Here are some of the most common (invisible) partners which participate in the third-party exchanges:

Entity                                      Percent of health-related pages

Google                                                78

Facebook                                            31

Twitter                                               18

Amazon                                              16

Experian                                             5

What do the third parties do with your data? We do not really know because the laws and regulations are rather fuzzy here. We do know that Google, Facebook and Twitter primarily make money by advertising so they could potentially use your info and customize the ads you see. Just because you visited a page on breast cancer does not mean that the “Invisible Web” knows your name and address but they do know that you have some interest in breast cancer. It would make financial sense to send breast cancer related ads your way: books about breast cancer, new herbal miracle cures for cancer or even ads by pharmaceutical companies. It would be illegal for your physician to pass on your diagnosis or inquiry about breast cancer to an advertiser without your consent but when it comes to the “Invisible Web” there is a continuous chatter going on in the background about your health interests without your knowledge.

Some users won’t mind receiving targeted ads. “If I am interested in web pages related to breast cancer, I could benefit from a few book suggestions by Amazon,” you might say. But we do not know what else the information is being used for. The appearance of the data broker Experian on the third-party request list should serve as a red flag. Experian‘s main source of revenue is not advertising but amassing personal data for reports such as credit reports which are then sold to clients. If Experian knows that you are checking out breast cancer pages then you should not be surprised if this information will be stored in some personal data file about you.

How do we contain this sharing of personal health information? One obvious approach is to demand accountability from the third parties regarding the fate of your browsing history. We need laws that regulate how information can be used, whether it can be passed on to advertisers or data brokers and how long the information is stored.

 

Here is the Privacy Policy Summary for WebMD, a commonly visited health information portal:

   We may use information we collect about you to:

 ·         Administer your account;

·         Provide you with access to particular tools and services;

·         Respond to your inquiries and send you administrative communications;

·         Obtain your feedback on our sites and our offerings;

·         Statistically analyze user behavior and activity;

·         Provide you and people with similar demographic characteristics and interests with more relevant content and advertisements;

·         Conduct research and measurement activities;

·         Send you personalized emails or secure electronic messages pertaining to your health interests, including news, announcements, reminders and opportunities from WebMD; or

·         Send you relevant offers and informational materials on behalf of our sponsors pertaining to your health interests.

 

Users are provided with instructions for how they can opt out of the tracking and receiving information from the (undisclosed) sponsors but it is unlikely that the majority of users read the privacy policy pages of the various health-related websites. It is even less likely that users will go through the cumbersome process of requesting that all their information be kept private and not passed on to corporate sponsors.

Perhaps one of the most effective solutions would be to make the “Invisible Web” more visible. If health-related pages were mandated to disclose all third-party requests in real-time such as pop-ups (“Information about your visit to this page is now being sent to Amazon“) and ask for consent in each case, users would be far more aware of the threat to personal privacy posed by health-related pages. Such awareness of health privacy and potential threats to privacy are routinely addressed in the real world and there is no reason why this awareness should not be extended to online information.

 

 

 

Note: An earlier version of this article was first published on the 3Quarksdaily Blog.

Reference:

Libert, Tim. “Privacy implications of health information seeking on the Web” Communications of the ACM, Vol. 58 No. 3, Pages 68-77, March 2015, doi: 10.1145/2658983 (PDF)

 

ResearchBlogging.org

Libert, T. (2015). Privacy implications of health information seeking on the web Communications of the ACM, 58 (3), 68-77 DOI: 10.1145/2658983

Advertisements

African-Americans Receive Heart Transplants at Hospitals With Poor Performance Track Records

About five million people in the US suffer from heart failure, and approximately half of them die within five years of being diagnosed. Only about 2,500 people a year receive a heart transplant – the treatment of last resort. A new heart can be life-saving, but it is also life-changing. Even under the best conditions, the surgery is complex, and recovery carries a heavy physical and emotional burden.

And not all heart transplant recipients fare equally well after the surgery. Researchers have found that black heart transplant patients are more likely to die after surgery than white or Hispanic patients.

While many different factors contribute to the disparity, the research indicates that where patients received their heart transplants played a big role. Black patients were more likely to have their transplants performed at the worst-performing centers.

Patient with his family and physician (via Shutterstock)
Patient with his family and physician (via Shutterstock)

 

This is merely one of many examples of health disparities faced by black Americans. But as a cardiologist, I find this finding especially troubling because many of the heart failure patients I treat are black.

So how do patients decide where to have their heart transplants performed? And wouldn’t a person who needs a heart transplant choose to go to a top center?

Quality is obviously a major factor. But there is another big consideration in deciding where to get a transplant: accessibility.

Not all transplant centers have the same results

Researchers at Ohio State University reviewed the records of heart transplants performed at 102 transplant centers in the US from 2000 to 2010. The researchers focused on the rate of death during the first year after the transplant in over 18,000 heart transplant recipients.

They found that black patients had a higher rate of dying within one year of receiving a new heart (15.3%) than either Hispanics (12.5%) or whites (12.8%).

To find out why this was happening, the researchers used a mathematical model to predict the risk of dying within a year after the transplant for every patient based on the severity of their disease and complicating risk factors such as advanced age or reduced kidney function. They then compared the calculated risk with the actually observed death rates. The difference between the prediction and reality allowed them to determine the quality of a transplant center.

Care doesn’t end when surgery does.
Heart via www.shutterstock.com

It turned out that a greater proportion of blacks received their heart transplant at centers with higher-than-expected mortality as compared with whites and Hispanics (56.4% versus 47.1% versus 48.1%, respectively).

The contrast was even starker between the top- and worst-performing centers. Blacks had the lowest rate of being transplanted at centers with excellent performance (blacks: 18.5%; whites: 25.3%; Hispanics 28.3%). They also had the highest likelihood of undergoing their transplant surgery at the worst-performing centers.

It turns out that where a person has their transplant is critical. Only 8.7% of black patients died during the first year after the transplant if they were fortunate enough to undergo surgery at a top center. But this number was more than twice as high (18.3%) for blacks at the worst-performing centers.

The study didn’t provide any definitive explanations as to why the majority of blacks underwent heart transplantation at centers with lower than expected outcomes.

Choosing a transplant center isn’t much of a choice

Patients do not “choose” a transplant center by simply looking it up in a catalog or on a website. While performance statistics for each organ transplant center in the United States are publicly available in the Scientific Registry of Transplant Recipients, those statistics are only part of the decision for where a patient will get their transplant. The “choice” is often made for the patients by the doctors who refer them to a transplant center and by the accessibility of the center.

I’m a cardiologist, and in the Chicago area, where I practice, there are five active heart transplant centers. We can show the numbers for the centers to our patients when discussing the possibility of a heart transplant and also provide some additional advice based on our prior experiences with the respective transplant teams. Because our patients are nearly all based in the Chicagoland area, most of these programs are reasonable options for them. However, patients and doctors in cities or regions that don’t have as many transplant centers, or who live in more remote areas may not have the luxury of choice.

Far from home?
Hospital bed via www.shutterstock.com

Accessibility matters because care doesn’t end with the surgery

Unless you’ve had a heart transplant, or know someone who has, it’s hard to understand just how life-changing the surgery is. I’ve noticed that many people are unprepared for the emotional and physical toll from the surgery and recovery. And it’s this toll that can makes accessibility such an important factor when choosing a transplant center.

After surgery, patients spend a couple of weeks recovering in the hospital. Even when they can go home, their health is closely monitored with frequent lab tests and check ups.

After transplant, patients will start taking medications to suppress their immune systems and keep their body from rejecting the new heart. And they have to stay on these medications for their rest of their lives. This means a lifetime of close monitoring to make sure that their heart is functioning well and that there aren’t any complications from the immune suppression.

For instance, during the first couple of months after surgery, patients have heart biopsies, where a small piece of the heart is removed to check for signs of rejection, every one to two weeks. As recovery progresses, biopsies may become monthly. The heart sample is so small that it does not damage the heart, but the biopsy is still an invasive procedure requiring hospitalization. And waiting for results can be stressful.

All of this means heart recipients spend a lot of time during the first year after their transplant seeing doctors and waiting for test results. Being close to a transplant center is important – it’s just easier to get to appointments. But accessibility isn’t just about the patient. It’s also about their support network. Imagine going through all of that alone.

On a practical level, family members and friends provide rides to the hospital, keep track of medications and doctor’s appointments and help with household chores during the recovery period. But what is most important is the emotional support that they provide.

So why do black transplant patients tend to wind up in transplant centers that don’t perform as well? Right now, we don’t know. Is it because they were referred to these centers by their cardiologists despite other feasible alternatives? What role does the health insurance of patients play in determining where they receive the heart transplant? Why are centers with a high percentage of black transplant recipients performing so poorly? And most importantly, what measures need to be taken to improve the quality of care?

These are important questions that physicians, public health officials and politicians need to ask themselves in order to address these disparities.

The Conversation

This article was originally published on The Conversation.
Read the original article.
ResearchBlogging.org
Kilic, A., Higgins, R., Whitson, B., & Kilic, A. (2015). Racial Disparities in Outcomes of Adult Heart Transplantation Circulation, 131 (10), 882-889 DOI: 10.1161/CIRCULATIONAHA.114.011676

When can you have sex after a heart attack? Most doctors do not talk about it.

Each year in the United States about 720,000 people have heart attacks and about 124,000 people in the UK and 55,000 people in Australia will have them as well. Since the 1980s, survival rates from heart attacks have improved – a lot of people get them, but more and more people are surviving. A recent study of patients in Denmark showed that in 1984-1988 31.4% of patients died within a month of having a heart attack. From 2004-2008 this was down to 14.8%.

Once a patient has made it through a heart attack and begins to recover, they get advice from their doctors on what to do to stay healthy and get back to normal. That includes a lot of things – when to go back to work, when they can start traveling again and what to eat. But there is an important item that a lot of doctors don’t talk about: sex.

There are no universal guidelines for getting back to ‘normal’

Providing advice about lifestyle can be more challenging than prescribing standardized medications or smoking cessation because “normal” life differs widely among patients and requires individualized counseling.

For instance, scientific evidence from large-scale clinical trials isn’t always available to help the cardiologist decide the ideal time for when an individual patient should return to work. A software engineer might get different advice than a butcher or construction worker who has to lift heavy objects all day long. Physicians have to carefully estimate the patient’s capacity for physical activity as well as the physical demands of the job and be pragmatic about how long a patient can take time off from work.

Sex also requires this kind individualized counseling. New research shows that patients want to talk about sexual activity with their doctors, but that all too often that conversation never takes place.

Time for a heart-to-heart with your doctor.
Heart via Syda Productions/Shutterstock

 

Let’s talk about sex

A recent study conducted in 127 hospitals in the United States and Spain suggests that doctors are not very good at broaching the topic of sexual activity after a heart attack.

Researchers studied 2,349 women and 1,152 men who had suffered from a myocardial infarction (the medical term for a heart attack). This study focused on younger heart attack patients (ages 18-55) and asked them whether they had discussed sexual activity with their doctors. With younger patients talking about life after a heart attack is especially important. The loss of sexual activity or function is a major quality of life issue, and can affect intimate relationships, reproduction and lead to depression.

In the month following the heart attack, only 12% of women and 19% of men had some discussion with a doctor about sex. In the US, most patients reported that they initiated the discussion, whereas in Spain, most discussions were initiated by the doctor. This means that more than 85% of patients received no advice from their doctors regarding if and when they could resume sexual activity.

The study found that the vast majority of patients were sexually active in the year before their heart attacks, and they valued sexuality as an important part of life. They also felt it was appropriate for physicians to initiate the discussion about having sex again.

It is interesting that in the US, patients were more likely to bring up sex and men were given more restrictive advice, while in Spain, physicians were more likely to bring up the topic and more restrictive recommendations were given to women.

The study did not specifically study the motivations of the physicians but these differences suggest that cultural differences and gender affect the counseling in regards to sexual activity. Future research could potentially also study the physicians and help uncover how culture and gender influence the counseling process.

This lack of communication between doctors and patients was not due to the patients’ unease: 84% of women and 91% of men said that they would feel comfortable talking to their doctors about sex. What is even more concerning is that the 15% or so of patients who received counseling often got inaccurate recommendations.

Sex is exercise. But doctors don’t talk about it that way

Two-thirds of those who talked about sex with their doctors were told that they could resume sexual activity with restrictions like limiting sex, taking a “passive role” or keeping their heart rate down during sex. But here’s the thing: sex is exercise. And after a heart attack doctors routinely ask patients whether they can tolerate mild to moderate physical activity such as mowing the lawn or climbing up two flights of stairs without chest pain or other major symptoms.

The Scientific Statement of the American Heart Association (AHA) on sexual activity states that it is reasonable to resume sexual activity as early as one week after an uncomplicated heart attack. If there are complications after the heart attack such as feeling out of breath or experiencing persistent chest pain then these problems need to be addressed first. And in the AHA guidelines there is no mention of “passive roles” or keeping heart rates down during sex. These restrictions are also quite impractical. How are patients supposed to monitor their heart rates and keep them down during sex?

The kind of restrictions recommended by doctors in the study – and presumably by medical practitioners who weren’t polled – are not backed up by science and place an unnecessary burden on a patient’s personal life. Hopefully, after reading the results of this study, doctors will take a more pro-active role and address the topic of sex with their heart attack patients with proper recommendations instead of leaving patients in a state of uncertainty. If a patient can handle moderate exercise, they can probably handle sex.

The Conversation

This article was originally published on The Conversation.
Read the original article.

 

New Study Shows Surgical Checklists In Operating Rooms Are Less Effective Than Assumed

The patient has verified his or her identity, the surgical site, the type of procedure, and his or her consent. Check.

The surgical site is marked on a patient if such marking is appropriate for the procedure. Check.

The probe measuring blood oxygen content has been placed on the patient and is functioning. Check.

All members of the surgical and anesthesia team are aware of whether the patient has a known allergy? Check.

Surgeon
Surgeon – via Shutterstock

These were the first items on a nineteen-point World Health Organization (WHO) surgical safety checklist from an international research study to evaluate the impact of routinely using checklists in operating rooms. The research involved over 7,500 patients undergoing surgery in eight hospitals (Toronto, Canada; New Delhi, India; Amman, Jordan; Auckland, New Zealand; Manila, Philippines; Ifakara, Tanzania; London, England; and Seattle, WA) and was published in the New England Journal of Medicine in 2009.

Some of the items on the checklist were already part of standard care at many of the enrolled hospitals, such as the use of oxygen monitoring probes. Other items, such as ensuring that there was a contingency plan for major blood loss prior to each surgical procedure, were not part of routine surgical practice. The impact of checklist implementation was quite impressive, showing that this simple safety measure nearly halved the rate of death in surgical patients from 1.6% to 0.8%.  The infection rate at the site of the surgical procedure also decreased from 6.2% in the months preceding the checklist introduction to a mere 3.4%.

Checklists as a Panacea?

The remarkable results of the 2009 study were met with widespread enthusiasm. This low-cost measure could be easily implemented in hospitals all over the world and could potentially lead to major improvements in patient outcomes. It also made intuitive sense that encouraging communication between surgical team members via checklists would reduce complications after surgery.

A few weeks after the study’s publication, the National Patient Safety Agency (NPSA) in the United Kingdom issued a patient safety alert, requiring National Health Service (NHS) organizations to use the WHO Surgical Safety Checklist for all patients undergoing surgical procedures. In 2010, Canada followed suit and also introduced regulations requiring the use of surgical safety checklists. However, the data for the efficacy of such lists had only been obtained in observational research studies conducted in selected hospitals. Would widespread mandatory implementation of such a system in “real world” community hospitals also lead to similar benefits?

A recently published study in the New England Journal of Medicine lead by Dr. David Urbach at the University of Toronto has now reviewed the surgery outcomes of hospitals in Ontario, Canada, comparing the rate of surgical complications during three-month periods before and after the implementation of the now mandatory checklists.  Nearly all the hospitals reported that they were adhering to the checklist requirements and the vast majority used either a checklist developed by the Canadian Patient Safety Institute, which is even more comprehensive than the WHO checklist or other similar checklists. After analyzing the results of more than 200,000 procedures at 101 hospitals, Urbach and colleagues found no significant change in the rate of death after surgery after the introduction of the checklists (0.71% versus 0.65% – not statistically significant). Even the overall complication rates or the infection rates in the Ontario hospitals did not change significantly after surgical teams were required to complete the checklists.

 

Check the Checklist

 

The discrepancy in the results between the two studies is striking. How can one study demonstrate such a profound benefit of introducing checklists while a second study shows no significant impact at all? The differences between the two studies may hold some important clues. The 2009 study had a pre-checklist death rate of 1.6%, which is more than double the pre-checklist death rate in the more recent Ontario study. This may reflect the nature and complexity of the surgeries surveyed in the first study and also the socioeconomic differences. A substantial proportion of the patients in the international study were enrolled in low-income or middle-income countries. The introduction of a checklist may have been of much greater benefit to patients and hospitals that were already struggling with higher complication rates.

Furthermore, as the accompanying editorial by Dr. Lucian Leape in the New England Journal of Medicine points out, assessment of checklist implementation in the recent study by Urbach and colleagues was based on a retrospective analysis of self-reports by surgical teams and hospitals. Items may have been marked as “checked” in an effort to rush through the list and start the surgical procedures without the necessary diligence and time required to carefully go through every single item on the checklist. In the 2009 WHO study, on the other hand, surgical teams were aware of the fact that they were actively participating in a research study and the participating surgeons may have therefore been more motivated to meticulously implement all the steps on a checklist.

One of the key benefits of checklists is that they introduce a systematic and standardized approach to patient care and improve communication between team members. It is possible that the awareness of surgical teams in the Ontario hospitals in regards to patient safety and the need for systematic communication was already raised to higher level even before the introduction of the mandatory checklists so that this mandate may have had less of an impact.

 

Looking Forward

The study by Urbach and colleagues does not prove that safety checklists are without benefit. It highlights that there is little scientific data supporting the use of mandatory checklists. Since the study could not obtain any data on how well the checklists were implemented in each hospital, it is possible that checklists are more effective when team members buy into their value and do not just view it as another piece of mandatory and bureaucratic paperwork.

Instead of mandating checklists, authorities should consider the benefits of allowing surgical teams to develop their own measures that improve patient safety and team communication. The safety measures will likely contain some form of physical or verbal checklists. By encouraging surgical teams to get involved in the development process and tailor the checklists according to the needs of individual patients, surgical teams and hospitals, they may be far more motivated to truly implement them.

Optimizing such tailored checklists, understanding why some studies indicate benefits of checklists whereas others do not and re-evaluating the efficacy of checklists in the non-academic setting will all require a substantial amount of future research before one can draw definitive conclusions about the efficacy of checklists. Regulatory agencies in Canada and the United Kingdom should reconsider their current mandates. Perhaps an even more important lesson to be learned is that health regulatory agencies should not rush to enforce new mandates based on limited scientific data.

 

ResearchBlogging.org

Urbach DR, Govindarajan A, Saskin R, Wilton AS, & Baxter NN (2014). Introduction of surgical safety checklists in Ontario, Canada. The New England Journal of Medicine, 370 (11), 1029-38 PMID: 24620866

Should Doctors ‘Google’ Their Patients?

Here is an excerpt from my latest post on the 3Quarksdaily blog:

 

Beware of what you share. Employers now routinely utilize internet search engines or social network searches to obtain information about job applicants. A survey of 2,184 hiring managers and human resource professionals conducted by the online employment website CareerBuilder.com revealed that 39% use social networking sites to research job candidates. Of the group who used social networks to evaluate job applicants, 43% found content on a social networking site that caused them to not hire a candidate, whereas only 19% found information that that has caused them to hire a candidate. The top reasons for rejecting a candidate based on information gleaned from social networking sites were provocative or inappropriate photos/information, including information about the job applicants’ history of substance abuse. This should not come as a surprise to job applicants in the US. After all, it is not uncommon for employers to invade the privacy of job applicants by conducting extensive background searches, ranging from the applicant’s employment history and credit rating to checking up on any history of lawsuits or run-ins with law enforcement agencies. Some employers also require drug testing of job applicants. The internet and social networking websites merely offer employers an additional array of tools to scrutinize their applicants. But how do we feel about digital sleuthing when it comes to relationship that is very different than the employer-applicant relationship – one which is characterized by profound trust, intimacy and respect, such as the relationship between healthcare providers and their patients?


The Hastings Center Report is a peer-reviewed academic bioethics journal which discusses the ethics of “Googling a Patient” in its most recent issue. It first describes a specific case of a twenty-six year old patient who sees a surgeon and requests a prophylactic mastectomy of both breasts. She says that she does not have breast cancer yet, but that her family is at very high risk for cancer. Her mother, sister, aunts, and a cousin have all had breast cancer; a teenage cousin had ovarian cancer at the age of nineteen; and that her brother was treated for esophageal cancer at the age of fifteen. She also says that she herself has suffered from a form of skin cancer (melanoma) at the age of twenty-five and that she wants to undergo the removal of her breasts without further workup because she wants to avoid developing breast cancer. She says that her prior mammogram had already shown abnormalities and she had been told by another surgeon that she needed the mastectomy.

Such prophylactic mastectomies, i.e. removal of both breasts, are indeed performed if young women are considered to be at very high risk for breast cancer based on their genetic profile and family history. The patient’s family history – her mother, sister and aunts being diagnosed with breast cancer – are indicative of a very high risk, but other aspects of the history such as her brother developing esophageal cancer at the age of fifteen are rather unusual. The surgeon confers with the patient’s primary care physician prior to performing the mastectomy and is puzzled by the fact that the primary care physician cannot confirm many of the claims made by the patient regarding her prior medical history or her family history. The physicians find no evidence of the patient ever having been diagnosed with a melanoma and they also cannot find documentation of the prior workup. The surgeon then asks a genetic counselor to meet with the patient and help resolve the discrepancies. During the evaluation process, the genetic counselor decides to ‘google’ the patient.

The genetic counselor finds two Facebook pages that are linked to the patient. One page appears to be a personal profile of the patient, stating that in addition to battling stage four melanoma (a very advanced stage of skin cancer with very low survival rates), she has recently been diagnosed with breast cancer. She also provides a link to a website soliciting donations to attend a summit for young cancer patients. The other Facebook page shows multiple pictures of the patient with a bald head, suggesting that she is undergoing chemotherapy, which is obviously not true according to what the genetic counselor and the surgeon have observed. Once this information is forwarded to the surgeon, he decides to cancel the planned surgery. It is not clear why the patient was intent on having the mastectomy and what she would gain from it, but the obtained information from the Facebook pages and the previously noted discrepancies are reason enough for the surgeon to rebuff the patient’s request for the surgery.

 

If you want to learn more about how ethics experts analyzed the situation and how common it is for psychologists enrolled in doctoral programs to use search engines or social networking sites in order to obtain more information about their patients/clients, please read the complete article at 3Quarksdaily.com.  

Stemming the Flow: Using Stem Cells To Treat Urinary Bladder Dysfunction

Neurogenic bladder is a disorder which occurs in spinal cord diseases such as spina bifida and is characterized by an inability of the nervous system to properly control the urinary bladder and the muscle tissue contained in the bladder wall. This can lead to spasms and a build-up of pressure in the bladder, often resulting in urinary incontinence. Children with spina bifida and neurogenic bladder often feel urges to urinate after drinking comparatively small amounts of liquid and they can also involuntarily leak urine. This is a source of a lot of emotional stress, especially in social settings such as when they are around friends or in school. If untreated, the long-standing and frequent pressure build-up in the bladder can have even more devastating effects such as infections or kidney damage.

Current treatments for neurogenic bladder involve surgeries which reconstruct and increase the size of the bladder by using tissue patches obtained from the bowel of the patient. Since such a gastrointestinal patch is derived from the patient’s own body, it is less likely to elicit an immune response and these intestinal tissue patches tend to be strong enough to withstand the pressures in the bladder. Unfortunately, the incompatibility of intestinal tissue and bladder tissue can lead to long-term complications, such as urinary tract infections, formation of urinary tract stones and in some rare cases even cancers. For this reason, researchers have been searching for newer safer patches which resemble the actual bladder wall.

 

A team of researchers at Northwestern University recently published a study which used stem cells of children with spina bifida to generate tissue patches that could be used for bladder surgery. In the paper “Cotransplantation with specific populations of spina bifida bone marrow stem/progenitor cells enhances urinary bladder regeneration” published in the Proceedings of the National Academy of Sciences (online publication on February 19, 2013), Arun Sharma and colleagues isolated two types of cells from the bone marrow of children with spina bifida: Mesenchymal stem cells (MSCs) and CD34+ cells (stem and progenitor cells which usually give rise to blood cells). They then coated a special polymer scaffold called POC with the cells and implanted this newly created patch into a rat bladder after performing a bladder augmentation surgery, similar to what is performed in patients with spina bifida. They then assessed the survival and formation of human muscle tissue on the implanted patch. When both human cell types (MSCs and CD34+) were combined, more than half of the implanted patch was covered with muscle tissue, four weeks after the implantation. If they only used CD34+ cells, they found that only a quarter of the patch was covered with muscle tissue. What is even more remarkable is that in addition to the newly formed muscle tissue, the implanted patch also showed evidence of some peripheral nerve growth and of blood vessel formation, both of which are found in healthy, normal bladder walls. These findings suggest that a patient’s own bone marrow stem cells can be used to help construct a tissue patch which could be used for bladder augmentation surgeries. The observation of some nerve growth in the implanted patch is also an exciting finding. One could conceivably try to re-connect the reconstructed bladder tissue with the main nervous system, but its success would largely depend on the severity of the neurologic disease.

One has to keep in mind that there are some key limitations to this study. The authors of the paper believe that the newly formed muscle tissue on the implanted patches was all derived from the patients’ bone marrow stem cells. However, there were no experiments performed to convincingly demonstrate this. The authors report that in previous studies, merely implanting the empty POC scaffold without any human stem cells resulted in 20% coverage with muscle tissue. This suggests that a big chunk of the newly formed muscle tissue is actually derived from the host rat and not from human stem cells. The authors also did not compare the effectiveness of this newly formed stem cell patch to the currently used intestinal patches, and there is no assessment of whether the newly formed muscle tissue on the reconstructed bladder is less prone to spasms and involuntary contractions. Lastly, all the in vivo testing of the tissue patches was performed in rats without neurogenic bladder and it is possible that the highly successful formation of muscle tissue may have been diminished if the animals had a neurologic disease.

A second study published in PLOS One took a different approach. In “Evaluation of Silk Biomaterials in Combination with Extracellular Matrix Coatings for Bladder Tissue Engineering with Primary and Pluripotent Cells” (online publication February 7, 2013), Debra Franck and colleagues describe how they coated a scaffold consisting of silk threads with extracellular matrix proteins such as fibronectin. Instead of using bone marrow stem cells, they converted induced pluripotent stem cells into the smooth muscle cells that are typically found inside the bladder wall and placed these newly differentiated cells on the silk scaffold. The induced pluripotent stem cells (iPSCs) used by Franck and colleagues can be generated from a patient’s own skin cells which reduces the risk of being rejected by a patient’s immune system. The advantage of this approach is that it starts out with a pure and truly pluripotent stem cell population, which is easier to direct and control than bone marrow stem cells. There are also a few important limitations to this second study. Franck and colleagues used mouse pluripotent stem cells and it is not clear that their approach would necessarily work with human pluripotent stem cells. They also did not test the function of these differentiated cells on the silk scaffold to check if they actually behaved like true bladder wall smooth muscle cells. Unlike the first study, Franck and colleagues did not evaluate the newly created patch in an animal model.

Both studies are purely experimental and much additional work is needed before they can be tested in humans, but both show promising new approaches to help improve bladder dysfunction. It is heartening to see that researchers are developing new cell-based therapies to help children and adults who suffer from neurogenic bladder. The results from these two experimental studies are still too preliminary to predict whether cell-based therapies can be successfully used in patients, but they represent important first steps.

 

Image credit: Taken from Franck D, Gil ES, Adam RM, Kaplan DL, Chung YG, et al. (2013) Evaluation of Silk Biomaterials in Combination with Extracellular Matrix Coatings for Bladder Tissue Engineering with Primary and Pluripotent Cells. PLoS ONE 8(2): e56237. doi:10.1371/journal.pone.0056237- Figure 6 B: Differentiated mouse induced pluripotent stem cells cultured on fibronectin-coated silk matrices show protein markers typically found in bladder smooth muscle cells.

ResearchBlogging.org
Franck, D., Gil, E., Adam, R., Kaplan, D., Chung, Y., Estrada, C., & Mauney, J. (2013). Evaluation of Silk Biomaterials in Combination with Extracellular Matrix Coatings for Bladder Tissue Engineering with Primary and Pluripotent Cells PLoS ONE, 8 (2) DOI: 10.1371/journal.pone.0056237

Good Can Come From Bad: Genetic Testing For The BRCA Breast Cancer Genes

Our ability to test for the presence of genetic mutations has become extremely cost-efficient and private companies, such as 23andMe now offer genetic testing for consumers who want to find out about their predisposition for genetic diseases. The results of such tests are sent directly to the consumers, without the involvement of genetic counselors or other healthcare providers. This has lead to a growing concern about how people will respond to finding out that they are carriers of mutations that predispose them to certain life-threatening diseases. Will the individuals be burdened by excessive anxiety? Will they tell their relatives and their healthcare providers that they carry mutations?

A study published in the new open access journal PeerJ addressed these questions by contacting male and female individuals who has received genetic testing by 23andMe for mutations in the BRCA genes which are strongly associated with breast cancer. The study “Dealing with the unexpected: consumer responses to direct-access BRCA mutation testing” by Uta Francke and colleagues (who are all employees of 23andMe) surveyed 16 women and 16 men who had received the news that they were carriers of BRCA1 or BRCA2 mutations, as well as control subjects who received the fortunate news that they did not carry any of the common BRCA mutations. Among the 16 women who tested positive (i.e. found out that they had a significant likelihood of developing breast cancer), none were extremely upset and six were either mildly or moderately upset. Surprisingly, nine mutation-positive women reported that they felt “neutral”.

The majority of the mutation-positive participants shared the test results with their spouses / partners or their blood relatives. Importantly, 13 of the 16 mutation-positive women contacted their primary care physician, gynecologist or oncologist for medical advice. There were 11 mutation-positive women who received this information through 23andMe for the first time (the others had already been diagnosed with breast cancer or had previously undergone testing), and these women indicated that they were planning to either undergo surgeries or have further breast cancer work-up and regular exams. The majority of mutation-positive men, on the other hand, did not consult their physicians, but did indicate that they would participate in future cancer screening.

Nearly all the participants said that they would undergo the testing again and felt good about knowing the results, independent of whether they positive or negative for the BRCA mutations. Only one of the participants (a mutation positive man with a family history of breast cancer) said that he would have preferred not to know, because of the “emotional cost”. A significant proportion of the participants who tested positive also had their relatives tested. This lead to the identification of 13 additional carriers, many of whom received medical counseling and were planning to take risk-reducing measures.

These findings suggest that the identification of mutations that indicate a high risk for developing breast cancer did not lead to severe anxiety or panic, but actually resulted in pro-active steps and medical care to help reduce their risk of developing breast cancer. One has to bear in mind that the sample size is small and that the study and the salaries of the authors were all funded by 23andMe, a genetic testing company that would financially benefit from widespread genetic testing. Nevertheless, the presented data seem solid and the responses of the participants do suggest that such testing was on the whole very beneficial for the participants. Hopefully, we will see more data emerge in the future regarding the psychological impact of genetic testing and whether the findings of this small study hold up in larger cohorts and when it comes to other genetic diseases.

On a side note, there is a very intriguing aspect to this paper that will be of benefit to many readers. The PeerJ journal gives the authors of a manuscript the option of disclosing the peer review process to the public. The authors of this paper took advantage of this option and we can all have a close look at the peer reviewer comments as well as the rebuttal of the authors. For anyone who is not used to reviewing scientific manuscripts, this is an excellent opportunity to learn about the inner workings of the peer review process.

 

Image Credit: Cartoon representation of the molecular structure of BRCA1 by Jawahar Swaminathan and MSD staff at the European Bioinformatics Institute, via Wikimedia Commons

ResearchBlogging.org

Francke, U., Dijamco, C., Kiefer, A., Eriksson, N., Moiseff, B., Tung, J., & Mountain, J. (2013). Dealing with the unexpected: consumer responses to direct-access BRCA mutation testing PeerJ, 1 DOI: 10.7717/peerj.8