Imagine: Listening to Songs Which Make Us More Generous

It does not come as a surprise that background music in a café helps create the ambience and affects how much customers enjoy sipping their cappuccinos. But recent research suggests that the choice of lyrics can even impact the social behavior of customers. The researcher Nicolas Ruth and his colleagues from the University of Würzburg (Bavaria, Germany) assembled a playlist of 18 songs with pro-social lyrics which they had curated by surveying 74 participants in an online questionnaire as to which songs conveyed a pro-social message. Examples of pro-social songs most frequently nominated by the participants included “Imagine” by John Lennon or “Heal the World” by Michael Jackson. The researchers then created a parallel playlist of 18 neutral songs by the same artists in order to truly discern the impact of the pro-social lyrics.

guitar

Here is an excerpt of both playlists

Artist                                    Pro-social playlist               Neutral playlist

P!nk                                         Dear Mr. President                    Raise Your Glass

John Lennon                           Imagine                                     Stand By Me

Michael Jackson                    Heal the World                         Dirty Diana

Nicole                                      Ein bisschen Frieden               Alles nur für dich

Pink Floyd                               Another Brick in the Wall      Wish You Were Here

Scorpions                                Wind of Change                        Still Loving You

Wiz Khalifa                              See You Again                          Black and Yellow

The researchers then arranged for either the neutral or the pro-social playlist to be played in the background in a Würzburg café during their peak business hours and to observe the behavior of customers. The primary goal of the experiment was to quantify the customers’ willingness to pay a surcharge of 0.30 Euros for fair trade coffee instead of regular coffee. Fair trade coffee is more expensive because it is obtained through organizations which offer better trading conditions to coffee bean farmers, prohibit child labor and support sustainable farming practices. Information about fair trade coffee was presented on a blackboard in the center of the café so that all customers would walk past it and the server was trained by the researchers to offer the fair trade surcharge in a standardized manner. The server also waited for a minimum of six minutes before taking the orders of guests so that they would be able to hear at least two songs in the background. During the observation period, 123 customers heard the prosocial playlist whereas 133 heard the neutral playlist.


The effect of this brief exposure to prosocial songs was quite remarkable. The percentage of customers who opted for the more expensive fair trade coffee option doubled when they head prosocial songs! Only 18% of customers hearing the neutral playlist were willing to pay the extra 0.30 Euros – even though they had also seen the information board about the benefits of fair trade coffee – but 38% of the customers hearing prosocial songs opted for the fair trade option.

Interestingly, hearing prosocial songs did not affect the tipping behavior of the customers. Independent of what music was playing in the background, customers tipped the server roughly 12% of the bill. This is in contrast to a prior study conducted in a French restaurant in which hearing prosocial songs increased the tipping behavior. One factor explaining the difference could be the manner by which the songs were selected. The French study specifically created a playlist of prosocial songs with French lyrics whereas the Würzburg playlist contained mostly English-language songs, often with global themes such as world peace, brotherhood and abolishing boundaries. Supporting fair trade may be more consistent with the images evoked by these global-themed songs than increased tipping of a server in Germany. It is also important to note that servers or waiters in Germany are comparatively well-compensated by restaurants and cafés, therefore they do not really depend on their income from tips.

The Würzburg experiment raises some intriguing questions about how music – either consciously or subconsciously – affects our immediate decision-making. The researchers went to great lengths to minimize confounding factors by matching up songs from the same artists in both playlists. Their work is also one of the first examples of a field study in a real-world setting because prior studies linking music and pro-social behavior have been mostly conducted in laboratory settings where pro-social behavior is experimentally simulated. But one also needs to consider some caveats before generalizing the results of the study.

Würzburg is a university town where students represent a significant proportion of the population. The researchers estimated that more than 40% of the customers were in their 20s, consistent with a principal student clientele which may be more mindful of the importance of fair trade. The history of Würzburg is also noteworthy because more than 80% of the city was destroyed in a matter of minutes during the Second World War when the British Royal Air force firebombed this predominantly civilian city and killed an estimated 5,000 residents. Residents of the city may be therefore especially sensitive to songs and imagery that evoke the importance of peace and the perils of war.

Some of the next steps in exploring this fascinating link between background music and behavior is to replicate the findings in other cities and also with participants from varying age groups and cultural backgrounds. Another avenue of research could be to assess whether the content of the lyrics affects distinct forms of behavior. Are there some prosocial songs which would increase local prosocial behavior such as tipping or supporting local charities whereas others may increase global social awareness? How long do the effects of the music last? Are customers consciously aware of the lyrics they are hearing in the background or are they just reacting subconsciously? The number of questions raised by this study shows us how exciting the topic is and that we will likely see more field studies in the years to come that will enlighten us.

References

1.              Ruth, N. (2016). Heal the World”: A field experiment on the effects of music with prosocial lyrics on prosocial behavior. Psychology of Music, (in press).

2.              Jacob, C., Guéguen, N., & Boulbry, G. (2010). Effects of songs with prosocial lyrics on tipping behavior in a restaurant. International Journal of Hospitality Management, 29(4), 761-763.

 

Note: An earlier version of this article was first published on the 3Quarksdaily blog.

ResearchBlogging.org

 

Ruth, N. (2016). “Heal the World”: A field experiment on the effects of music with prosocial lyrics on prosocial behavior Psychology of Music DOI: 10.1177/0305735616652226

Empathy, Connectedness and Responsibility: German Academics Discuss the Refugee Crisis

Nearly half a million applications for asylum submitted by refugees were processed by German authorities in 2015, according to the German Federal Office for Refugees and Migration. The number of people who were officially registered in Germany as potential asylum seekers was even far higher-roughly one million in 2015 – which suggests that Germany anticipates an even higher number of official asylum applications for 2016. Chancellor Angela Merkel has defied many critics even in her own party and cabinet by emphasizing that Germany can and will take on more refugees, most of whom are coming from war-torn countries such as Syria, Iraq and Afghanistan. “We can do it!” (“Wir schaffen das!”) was the phrase she used in September of 2015 to convey her optimism and determination in the face of ever-growing numbers of refugees and the gradual rise of support for far right extremist demonstrations and violent attacks by far right extremists on refugees centers in Germany.

Refugees welcome

The German media and right wing populists are currently obsessing about statistics such as the fact that the far right and libertarian party AfD (Alternative für Deutschland – Alternative for Germany) will garner 10% of the popular vote or that the vast majority of the refugees are male and could lead to a demographic gender shift if they remain in Germany. While such statistics serve as an important barometer of the political climate in the German electorate or to prepare for the challenges faced by the refugees and German society in the next years, they do not address the fundamental philosophical questions raised by this refugee crisis. In the latest issue of the popular German philosophy periodical “Philosophie Magazin“, the editors asked philosophers and other academic scholars to weigh in on some of the key issues and challenges in the face of this crisis.

Should we be motivated by a sense of global responsibility when we are confronted with the terrible suffering experienced by refugees whose homes have been destroyed? The sociologist Hartmut Rosa at the University of Jena responds to this question by suggesting that we should focus on Verbundenheit (“connectedness”) instead of Verantwortung (“responsibility”).  Demanding that those of us who lead privileged lives of safety and reasonable material comfort should feel individually responsible for the suffering of others can lead to a sense of moral exhaustion. Are we responsible for the suffering of millions of people in Syria and East Africa? Are we responsible for the extinction of species as a consequence of climate change? Instead of atomizing – and thus perhaps even rendering irrelevant – the abstract concept of individual responsibility, we should become aware of how we are all connected.

We are connected with the children of Syria and Somalia by virtue of the fact that they are fellow humans who deserve to live, learn and love. We are connected to the species facing extinction by climate change because we share the ecosystems of this planet and our species may also face extinction. For Rosa, the sense of connectedness is what motivates us to help the refugees without trying to precisely determine our relative global responsibility.

Are rational thoughts or emotions a better guide for how to respond to the refugee crisis? The philosopher Volker Gerhardt from the Humboldt University of Berlin emphasizes the importance of balancing rational and emotional responses. Rationally calculating the economic cost of taking on refugees and the benefit of increasing the younger workforce once the refugees are granted permission to settle and work in Germany does not do justice to the issues. Gerhardt is aware of his own background as the child of a refugee mother after World War II who were both cared for by their relatives. Every time he sees a photo of a refugee child, it evokes memories of his own past and serves as a motivation to help. But he is also aware of the limits of such emotional and rational willingness to help. Currently, hundreds of thousands of German citizens are volunteering to help and welcome the refugees by donating their time, money and other essentials but the German government needs to realize that this spirit of charity may become exhausted if the influx of refugees is not restricted. Hilde Landweer is a philosopher at the Free University of Berlin who studies the philosophy of emotions. She explains the underlying mechanisms which allow us to feel empathy for refugees. According to Landweer, there are three components which allow to feel empathy: 1) we have to feel a sense of similarity towards the other person, 2) we have to be able “experience” their situation and 3) we have to realize that one day, we might be able to also find ourselves in such a situation. Germany’s leadership role in its willingness to help the refugees when compared to other developed countries – Britain is planning on taking in 5,000 Syrian refugees per year, the USA only 1,000 to 1,500 – may be rooted in the fact that Germans can identify with the plight of the Syrian refugees. Millions of Germans experienced expulsion and forced resettlement from their homelands after World War II when post-war Germany was carved up. Landweer believes that empathy can be nurtured by meeting refugees and hearing about their personal narratives. But empathy needs to be more than shared pain, it needs to also include looking forward to how one can restore security and joy. This positive vision is what ultimately motivates us to help.

Does Germany have a unique historic responsibility when responding to the refugee crisis? Aleida Assmann is a professor of literary and cultural studies at the University of Konstanz who studies collective memory and its impact on German culture. Assmann refers to the Erinnerungskultur – the culture of remembrance – in Germany. Contemporary Germans are aware of the fact that their ancestors either actively participated or passively ignored the mass murder of millions of Jews, Slavs, gypsies and other ethnicities. According to Assmann, this historic responsibility is sometime summarized as “Auschwitz should never occur again!” but she takes a broader view of this responsibility. The root of Auschwitz was the labeling of fellow humans as fremd – foreign, alien or “other” – which did not deserve respect, empathy and help. Our historic responsibility requires that we avoid the trap of viewing refugees as fremd and instead encounter them with a sense of fellowship. The inherited burden of the Nazi past becomes an opportunity for Germany to define its future: Do we want to become a society that closes its doors to fellow humans in despair or do we want to welcome them in order to build a future society characterized by caring and sharing.

These are just some of the responses given by the philosophers in the Philosophie Magazin issue but they filled me with hope. As a German living in the USA, I often fall into the trap of reading clickbait and sensationalist news articles about the refugee crisis such as the rise of crimes committed by both right wing extremists and refugees in Germany, the imagery of refugees “flooding” German cities and the political gossip about Merkel’s future. But thinking more deeply about the core issues reminds us that what is at stake in Germany is our humanity. Yes, it will be challenging to integrate millions of refugees and provide them with a new Heimat – homeland – but our history and culture compels us to act in a humane fashion and not ignore the plight of fellow human beings.

 

 

******************************************

Note: An earlier version of this article was first published on the 3Quarksdaily blog.

Blissful Ignorance: How Environmental Activists Shut Down Molecular Biology Labs in High Schools

Hearing about the HannoverGEN project made me feel envious and excited. Envious, because I wish my high school had offered the kind of hands-on molecular biology training provided to high school students in Hannover, the capital of the German state of Niedersachsen. Excited, because it reminded me of the joy I felt when I first isolated DNA and ran gels after restriction enzyme digests during my first year of university in Munich. I knew that many of the students at the HannoverGEN high schools would be similarly thrilled by their laboratory experience and perhaps even pursue careers as biologists or biochemists.

dna-163466_640
What did HannoverGEN entail? It was an optional pilot program initiated and funded by the state government of Niedersachsen at four high schools in the Hannover area. Students enrolled in the HannoverGEN classes would learn to use molecular biology tools typically reserved for college-level or graduate school courses in order to study plant genetics. Some of the basic experiments involved isolating DNA from cabbage or how learning how bacteria transfer genes to plants, more advanced experiments enabled the students to analyze whether or not the genome of a provided maize sample had been genetically modified. Each experimental unit was accompanied by relevant theoretical instruction on the molecular mechanisms of gene expression and biotechnology as well as ethical discussions regarding the benefits and risks of generating genetically modified organisms (“GMOs”). The details of the HannoverGEN program are only accessible through the the Wayback Machine Internet archive because the award-winning educational program and the associated website were shut down in 2013 at the behest of German anti-GMO activist groups, environmental activists, Greenpeace, the Niedersachsen Green Party and the German organic food industry.

Why did these activists and organic food industry lobbyists oppose a government-funded educational program which improved the molecular biology knowledge and expertise of high school students? A press release entitled “Keine Akzeptanzbeschaffung für Agro-Gentechnik an Schulen!” (“No Acceptance for Agricultural Gene Technology at Schools“) in 2012 by an alliance representing “organic” or “natural food” farmers accompanied by the publication of a critical “study” with the same title (PDF), which was funded by this alliance as well as its anti-GMO partners, gives us some clues. They feared that the high school students might become too accepting of biotechnology in agriculture and that the curriculum did not sufficiently highlight all the potential dangers of GMOs. By allowing the ethical discussions to not only discuss the risks but also mention the benefits of genetically modifying crops, students might walk away with the idea that GMOs could be beneficial for humankind. The group believed that taxpayer money should not be used to foster special interests such as those of the agricultural industry which may want to use GMOs.

A response by the University of Hannover (PDF), which had helped develop the curriculum and coordinated the classes for the high school students, carefully analyzed the complaints of the anti-GMO activists. The author of the anti-HannoverGEN “study” had not visited the HannoverGEN laboratories, nor had he had interviewed the biology teachers or students enrolled in the classes. In fact, his critique was based on weblinks that were not even used in the curriculum by the HannoverGEN teachers or students. His analysis ignored the balanced presentation of biotechnology that formed the basis of the HannoverGEN curriculum and that discussing potential risks of genetic modification was a core topic in all the classes.

Unfortunately, this shoddily prepared “study” had a significant impact, in part because it was widely promoted by partner organizations. Its release in the autumn of 2012 came at an opportune time for political activists because Niedersachsen was about to have an election. Campaigning against GMOs seemed like a perfect cause for the Green Party and a high school program which taught the use of biotechnology to high school students became a convenient lightning rod. When the Social Democrats and the Green Party formed a coalition after winning the election in early 2013, nixing the HannoverGEN high school program was formally included in the so-called coalition contract. This is a document in which coalition partners outline the key goals for the upcoming four year period. When one considers how many major issues and problems the government of a large German state has to face, such as healthcare, education, unemployment or immigration, it is mind-boggling that de-funding a program involving only four high schools received so much attention that it needed to be anchored in the coalition contract. In fact, it is a testimony to the influence and zeal of the anti-GMO lobby.

Once the cancellation of HannoverGEN was announced, the Hannover branch of Greenpeace also took credit for campaigning against this high school program and celebrated its victory. The Greenpeace anti-GMO activist David Petersen said that the program was too cost intensive because equipping high school laboratories with state-of-the-art molecular biology equipment had already cost more than 1 million Euros. The previous center-right government which had initiated the HannoverGEN project was planning on expanding the program to even more high schools because of the program’s success and national recognition for innovative teaching. According to Petersen, this would have wasted even more taxpayer money without adequately conveying the dangers of using GMOs in agriculture.

The scientific community was shaken up by the decision of the new Social Democrat-Green Party coalition government in Niedersachsen. This was an attack on the academic freedom of schools under the guise of accusing them of promoting special interests while ignoring that the anti-GMO activists were representing their own special interests. The “study” attacking HannoverGEN was funded by the lucrative “organic” or “natural food” food industry! Scientists and science writers such as Martin Ballaschk or Lars Fischer wrote excellent critical articles stating that squashing high-quality, hand-on science programs could not lead to better decision-making. How could ignorant students have a better grasp of GMO risks and benefits than those who receive relevant formal science education and thus make truly informed decisions? Sadly, this outcry by scientists and science writers did not make much of a difference. It did not seem that the media felt this was much of a cause to fight for. I wonder if the media response would have been just as lackluster if the government had de-funded a hands-on science lab to study the effects of climate change.

In 2014, the government of Niedersachsen then announced that they would resurrect an advanced biology laboratory program for high schools with the generic and vague title “Life Science Lab”. By removing the word “Gen” from its title which seems to trigger visceral antipathy among anti-GMO activists, de-emphasizing genome science and by also removing any discussion of GMOs from the curriculum, this new program would leave students in the dark about GMOs. Ignorance is bliss from an anti-GMO activist perspective because the void of scientific ignorance can be filled with fear.

From the very first day that I could vote in Germany during the federal election of 1990, I always viewed the Green Party as a party that represented my generation. A party of progressive ideas, concerned about our environment and social causes. However, the HannoverGEN incident is just one example of how the Green Party is caving in to ideologies, thus losing its open-mindedness and progressive nature. In the United States, the anti-science movement, which attacks teaching climate change science or evolutionary biology at schools, tends to be rooted in the right wing political spectrum. Right wingers or libertarians are the ones who always complain about taxpayer dollars being wasted and used to promote agendas in schools and universities. But we should not forget that there is also a different anti-science movement rooted in the leftist and pro-environmental political spectrum – not just in Germany. As a scientist, I feel that it is becoming increasingly difficult to support the Green Party because of its anti-science stance.

I worry about all anti-science movements, especially those which attack science education. There is nothing wrong with questioning special interests and ensuring that school and university science curricula are truly balanced. But the balance needs to be rooted in scientific principles, not political ideologies. Science education has a natural bias – it is biased towards knowledge that is backed up by scientific evidence. We can hypothetically discuss dangers of GMOs but the science behind the dangers of GMO crops is very questionable. Just like environmental activists and leftists agree with us scientists that we do not need to give climate change deniers and creationists “balanced” treatment in our science curricula, they should also accept that much of the “anti-GMO science” is currently more based on ideology than on actual scientific data. Our job is to provide excellent science education so that our students can critically analyze and understand scientific research, independent of whether or not it supports our personal ideologies.

 

Note: An earlier version of this article was first published on the 3Quarksdaily blog.

Feel Our Pain: Empathy and Moral Behavior

“It’s empathy that makes us help other people. It’s empathy that makes us moral.” The economist Paul Zak casually makes this comment in his widely watched TED talk about the hormone oxytocin, which he dubs the “moral molecule”. Zak quotes a number of behavioral studies to support his claim that oxytocin increases empathy and trust, which in turn increases moral behavior. If all humans regularly inhaled a few puffs of oxytocin through a nasal spray, we could become more compassionate and caring. It sounds too good to be true. And recent research now suggests that this overly simplistic view of oxytocin, empathy and morality is indeed too good to be true.

Hands

Many scientific studies support the idea that oxytocin is a major biological mechanism underlying the emotions of empathy and the formation of bonds between humans. However, inferring that these oxytocin effects in turn make us more moral is a much more controversial statement. In 2011, the researcher Carsten De Dreu and his colleagues at the University of Amsterdam in the Netherlands published the study Oxytocin promotes human ethnocentrism which studied indigenous Dutch male study subjects who in a blinded fashion self-administered either nasal oxytocin or a placebo spray. The subjects then answered questions and performed word association tasks after seeing photographic images of Dutch males (the “in-group”) or images of Arabs and Germans, the “out-group” because prior surveys had shown that the Dutch public has negative views of both Arabs/Muslims and Germans. To ensure that the subjects understood the distinct ethnic backgrounds of the target people shown in the images, they were referred to typical Dutch male names, German names (such as Markus and Helmut) or Arab names (such as Ahmed and Youssef).

Oxytocin increased favorable views and word associations but only towards in-group images of fellow Dutch males. The oxytocin treatment even had the unexpected effect of worsening the views regarding Arabs and Germans but this latter effect was not quite statistically significant. Far from being a “moral molecule”, oxytocin may actually increase ethnic bias in society because it selectively enhances certain emotional bonds. In a subsequent study, De Dreu then addressed another aspect of the purported link between oxytocin and morality by testing the honesty of subjects. The study Oxytocin promotes group-serving dishonesty showed that oxytocin increased cheating in study subjects if they were under the impression that dishonesty would benefit their group. De Dreu concluded that oxytocin does make us less selfish and care more about the interest of the group we belong to.

These recent oxytocin studies not only question the “moral molecule” status of oxytocin but raise the even broader question of whether more empathy necessarily leads to increased moral behavior, independent of whether or not it is related to oxytocin. The researchers Jean Decety and Jason Cowell at the University of Chicago recently analyzed the scientific literature on the link between empathy and morality in their commentary Friends or Foes: Is Empathy Necessary for Moral Behavior?, and find that the relationship is far more complicated than one would surmise. Judges, police officers and doctors who exhibit great empathy by sharing in the emotional upheaval experienced by the oppressed, persecuted and severely ill always end up making the right moral choices – in Hollywood movies. But empathy in the real world is a multi-faceted phenomenon and we use this term loosely, as Decety and Cowell point out, without clarifying which aspect of empathy we are referring to.

Decety and Cowell distinguish at least three distinct aspects of empathy:

1. Emotional sharing, which refers to how one’s emotions respond to the emotions of those around us. Empathy enables us to “feel” the pain of others and this phenomenon of emotional sharing is also commonly observed in non-human animals such as birds or mice.

2. Empathic concern, which describes how we care for the welfare of others. Whereas emotional sharing refers to how we experience the emotions of others, empathic concern motivates us to take actions that will improve their welfare. As with emotional sharing, empathic concern is not only present in humans but also conserved among many non-human species and likely constitutes a major evolutionary advantage.

3. Perspective taking, which – according to Decety and Cowell – is the ability to put oneself into the mind of another and thus imagine what they might be thinking or feeling. This is a more cognitive dimension of empathy and essential for our ability to interact with fellow human beings. Even if we cannot experience the pain of others, we may still be able to understand or envision how they might be feeling. One of the key features of psychopaths is their inability to experience the emotions of others. However, this does not necessarily mean that psychopaths are unable to cognitively imagine what others are thinking. Instead of labeling psychopaths as having no empathy, it is probably more appropriate to specifically characterize them as having a reduced capacity to share in the emotions while maintaining an intact capacity for perspective-taking.

In addition to the complexity of what we call “empathy”, we need to also understand that empathy is usually directed towards specific individuals and groups. De Dreu’s studies demonstrated that oxytocin can make us more pro-social as long as it benefits those who we feel belong to our group but not necessarily those outside of our group. The study Do you feel my pain? Racial group membership modulates empathic neural responses by Xu and colleagues at Peking University used fMRI brain imaging in Chinese and Caucasian study subjects and measured their neural responses to watching painful images. The study subjects were shown images of either a Chinese or a Caucasian face. In the control condition, the depicted image showed a face being poked with a cotton swab. In the pain condition, study subjects were shown a face of a person being poked with a needle attached to syringe. When the researchers measured the neural responses with the fMRI, they found significant activation in the anterior cingulate cortex (ACC) which is part of the neural pain circuit, both for pain we experience ourselves but also for empathic pain we experience when we see others in pain. The key finding in Xu’s study was that ACC activation in response to seeing the painful image was much more profound when the study subject and the person shown in the painful image belonged to the same race.

As we realize that the neural circuits and hormones which form the biological basis of our empathy responses are so easily swayed by group membership then it becomes apparent why increased empathy does not necessarily result in behavior consistent with moral principles. In his essay “Against Empathy“, the psychologist Paul Bloom also opposes the view that empathy should form the basis of morality and that we should unquestioningly elevate empathy to virtue for all:

“But we know that a high level of empathy does not make one a good person and that a low level does not make one a bad person. Being a good person likely is more related to distanced feelings of compassion and kindness, along with intelligence, self-control, and a sense of justice. Being a bad person has more to do with a lack of regard for others and an inability to control one’s appetites.”

I do not think that we can dismiss empathy as a factor in our moral decision-making. Bloom makes a good case for distanced compassion and kindness that does not arise from the more visceral emotion of empathy. But when we see fellow humans and animals in pain, then our initial biological responses are guided by empathy and anger, not the more abstract concept of distanced compassion. What we need is a better scientific and philosophical understanding of what empathy is. Empathic perspective-taking may be a far more robust and reliable guide for moral decision-making than empathic emotions. Current scientific studies on empathy often measure it as an aggregate measure without teasing out the various components of empathy. They also tend to underestimate that the relative contributions of the empathy components (emotion, concern, perspective-taking) can vary widely among cultures and age groups. We need to replace overly simplistic notions such as oxytocin = moral molecule or empathy = good with a more refined view of the complex morality-empathy relationship guided by rigorous science and philosophy.

 

References:

De Dreu, C. K., Greer, L. L., Van Kleef, G. A., Shalvi, S., & Handgraaf, M. J. (2011). Oxytocin promotes human ethnocentrismProceedings of the National Academy of Sciences, 108(4), 1262-1266.

Decety, J., & Cowell, J. M. (2014). Friends or Foes: Is Empathy Necessary for Moral Behavior?Perspectives on Psychological Science, 9(5), 525-537.

Shalvi, S., & De Dreu, C. K. (2014). Oxytocin promotes group-serving dishonestyProceedings of the National Academy of Sciences, 111(15), 5503-5507.

Xu, X., Zuo, X., Wang, X., & Han, S. (2009). Do you feel my pain? Racial group membership modulates empathic neural responsesThe Journal of Neuroscience, 29(26), 8525-8529.

 

*****************************

Note: An earlier version of this article was first published on the 3Quarksdaily blog.

 

ResearchBlogging.org

 

 

 

 

De Dreu, C., Greer, L., Van Kleef, G., Shalvi, S., & Handgraaf, M. (2011). Oxytocin promotes human ethnocentrism Proceedings of the National Academy of Sciences, 108 (4), 1262-1266 DOI: 10.1073/pnas.1015316108

 

Decety J, & Cowell JM (2014). Friends or Foes: Is Empathy Necessary for Moral Behavior? Perspectives on psychological science : a journal of the Association for Psychological Science, 9 (5), 525-37 PMID: 25429304

 

Shalvi S, & De Dreu CK (2014). Oxytocin promotes group-serving dishonesty. Proceedings of the National Academy of Sciences of the United States of America, 111 (15), 5503-7 PMID: 24706799

 

Xu X, Zuo X, Wang X, & Han S (2009). Do you feel my pain? Racial group membership modulates empathic neural responses. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29 (26), 8525-9 PMID: 19571143

The “Invisible Web” Undermines Health Information Privacy

“The goal of privacy is not to protect some stable self from erosion but to create boundaries where this self can emerge, mutate, and stabilize. What matters here is the framework— or the procedure— rather than the outcome or the substance. Limits and constraints, in other words, can be productive— even if the entire conceit of “the Internet” suggests otherwise.

         Evgeny Morozov in “To Save Everything, Click Here: The Folly of Technological Solutionism

 

We cherish privacy in health matters because our health has such a profound impact on how we interact with other humans. If you are diagnosed with an illness, it should be your right to decide when and with whom you share this piece of information. Perhaps you want to hold off on telling your loved ones because you are worried about how it might affect them. Maybe you do not want your employer to know about your diagnosis because it could get you fired. And if your bank finds out, they could deny you a mortgage loan. These and many other reasons have resulted in laws and regulations that protect our personal health information. Family members, employers and insurances have no access to your health data unless you specifically authorize it. Even healthcare providers from two different medical institutions cannot share your medical information unless they can document your consent.

Health Information Privacy via Shutterstock
Health Information Privacy via Shutterstock

The recent study “Privacy Implications of Health Information Seeking on the Web” conducted by Tim Libert at the Annenberg School for Communication (University of Pennsylvania) shows that we have a for more nonchalant attitude regarding health privacy when it comes to personal health information on the internet. Libert analyzed 80,142 health-related webpages that users might come across while performing online searches for common diseases. For example, if a user uses Google to search for information on HIV, the Center for Disease Control and Prevention (CDC) webpage on HIV/AIDS (http://www.cdc.gov/hiv/) is one of the top hits and users will likely click on it. The information provided by the CDC will likely provide solid advice based on scientific results but Libert was more interested in investigating whether visits to the CDC website were being tracked. He found that by visiting the CDC website, information of the visit is relayed to third-party corporate entities such as Google, Facebook and Twitter. The webpage contains “Share” or “Like” buttons which is why the URL of the visited webpage (which contains the word “HIV”) is passed on to them – even if the user does not explicitly click on the buttons.

Libert found that 91% of health-related pages relay the URL to third parties, often unbeknownst to the user, and in 70% of the cases, the URL contains sensitive information such as “HIV” or “cancer” which is sufficient to tip off these third parties that you have been searching for information related to a specific disease. Most users probably do not know that they are being tracked which is why Libert refers to this form of tracking as the “Invisible Web” which can only be unveiled when analyzing the hidden http requests between the servers. Here are some of the most common (invisible) partners which participate in the third-party exchanges:

Entity                                      Percent of health-related pages

Google                                                78

Facebook                                            31

Twitter                                               18

Amazon                                              16

Experian                                             5

What do the third parties do with your data? We do not really know because the laws and regulations are rather fuzzy here. We do know that Google, Facebook and Twitter primarily make money by advertising so they could potentially use your info and customize the ads you see. Just because you visited a page on breast cancer does not mean that the “Invisible Web” knows your name and address but they do know that you have some interest in breast cancer. It would make financial sense to send breast cancer related ads your way: books about breast cancer, new herbal miracle cures for cancer or even ads by pharmaceutical companies. It would be illegal for your physician to pass on your diagnosis or inquiry about breast cancer to an advertiser without your consent but when it comes to the “Invisible Web” there is a continuous chatter going on in the background about your health interests without your knowledge.

Some users won’t mind receiving targeted ads. “If I am interested in web pages related to breast cancer, I could benefit from a few book suggestions by Amazon,” you might say. But we do not know what else the information is being used for. The appearance of the data broker Experian on the third-party request list should serve as a red flag. Experian‘s main source of revenue is not advertising but amassing personal data for reports such as credit reports which are then sold to clients. If Experian knows that you are checking out breast cancer pages then you should not be surprised if this information will be stored in some personal data file about you.

How do we contain this sharing of personal health information? One obvious approach is to demand accountability from the third parties regarding the fate of your browsing history. We need laws that regulate how information can be used, whether it can be passed on to advertisers or data brokers and how long the information is stored.

 

Here is the Privacy Policy Summary for WebMD, a commonly visited health information portal:

   We may use information we collect about you to:

 ·         Administer your account;

·         Provide you with access to particular tools and services;

·         Respond to your inquiries and send you administrative communications;

·         Obtain your feedback on our sites and our offerings;

·         Statistically analyze user behavior and activity;

·         Provide you and people with similar demographic characteristics and interests with more relevant content and advertisements;

·         Conduct research and measurement activities;

·         Send you personalized emails or secure electronic messages pertaining to your health interests, including news, announcements, reminders and opportunities from WebMD; or

·         Send you relevant offers and informational materials on behalf of our sponsors pertaining to your health interests.

 

Users are provided with instructions for how they can opt out of the tracking and receiving information from the (undisclosed) sponsors but it is unlikely that the majority of users read the privacy policy pages of the various health-related websites. It is even less likely that users will go through the cumbersome process of requesting that all their information be kept private and not passed on to corporate sponsors.

Perhaps one of the most effective solutions would be to make the “Invisible Web” more visible. If health-related pages were mandated to disclose all third-party requests in real-time such as pop-ups (“Information about your visit to this page is now being sent to Amazon“) and ask for consent in each case, users would be far more aware of the threat to personal privacy posed by health-related pages. Such awareness of health privacy and potential threats to privacy are routinely addressed in the real world and there is no reason why this awareness should not be extended to online information.

 

 

 

Note: An earlier version of this article was first published on the 3Quarksdaily Blog.

Reference:

Libert, Tim. “Privacy implications of health information seeking on the Web” Communications of the ACM, Vol. 58 No. 3, Pages 68-77, March 2015, doi: 10.1145/2658983 (PDF)

 

ResearchBlogging.org

Libert, T. (2015). Privacy implications of health information seeking on the web Communications of the ACM, 58 (3), 68-77 DOI: 10.1145/2658983

Moral Time: Does Our Internal Clock Influence Moral Judgments?

Does morality depend on the time of the day? The study “The Morning Morality Effect: The Influence of Time of Day on Unethical Behavior” published in October of 2013 by Maryam Kouchaki and Isaac Smith suggested that people are more honest in the mornings, and that their ability to resist the temptation of lying and cheating wears off as the day progresses. In a series of experiments, Kouchaki and Smith found that moral awareness and self-control in their study subjects decreased in the late afternoon or early evening.  The researchers also assessed the degree of “moral disengagement”, i.e. the willingness to lie or cheat without feeling much personal remorse or responsibility, by asking the study subjects to respond to questions such as “Considering the ways people grossly misrepresent themselves, it’s hardly a sin to inflate your own credentials a bit” or “People shouldn’t be held accountable for doing questionable things when they were just doing what an authority figure told them to do” on a scale from 1 (strongly disagree) to 7 (strongly agree). Interestingly, the subjects who strongly disagreed with such statements were the most susceptible to the morning morality effect. They were quite honest in the mornings but significantly more likely to cheat in the afternoons. On the other hand, moral disengagers, i.e. subjects who did not think that inflating credentials or following questionable orders was a big deal, were just as likely to cheat in the morning as they were in the afternoons.

Clocks

 

Understandably, the study caused quite a bit of ruckus and became one of the most widely discussed psychology research studies in 2013, covered widely by blogs and newspapers such as the Guardian “Keep the mornings honest, the afternoons for lying and cheating” or the German Süddeutsche Zeitung “Lügen erst nach 17 Uhr” (Lying starts at 5 pm). And the findings of the study also raised important questions: Should organizations and businesses take the time of day into account when assigning tasks to employees which require high levels of moral awareness?  How can one prevent the “moral exhaustion” in the late afternoon and the concomitant rise in the willingness to cheat?  Should the time of the day be factored into punishments for unethical behavior?

One question not addressed by Kouchaki and Smith was whether the propensity to become dishonest in the afternoons or evenings could be generalized to all subjects or whether the internal time in the subjects was also a factor. All humans have an internal body clock – the circadian clock- which runs with a period of approximately 24 hours. The circadian clock controls a wide variety of physical and mental functions such as our body temperature, the release of hormones or our levels of alertness. The internal clock can vary between individuals, but external cues such as sunlight or the social constraints of our society force our internal clocks to be synchronized to a pre-defined external time which may be quite distinct from what our internal clock would choose if it were to “run free”. Free-running internal clocks of individuals can differ in terms of their period (for example 23.5 hours versus 24.4 hours) as well as the phases of when individuals would preferably engage in certain behaviors. Some people like to go to bed early, wake up at 5 am or 6 am on their own even without an alarm clock and they experience peak levels of alertness and energy before noon. In contrast to such “larks”, there are “owls” among us who prefer to go to bed late at night, wake up at 11 am, experience their peak energy levels and alertness in the evening hours and like to stay up way past midnight.

It is not always easy to determine our “chronotype” – whether we are “larks”, “owls” or some intermediate thereof – because our work day often imposes its demands on our internal clocks. Schools and employers have set up the typical workday in a manner which favors “larks”, with work days usually starting around 7am – 9am. In 1976, the researchers Horne and Östberg developed a Morningness-Eveningness Questionnaire to investigate what time of the day individuals would prefer to wake up, work or take a test if it was entirely up to them. They found that roughly 40% of the people they surveyed had an evening chronotype!

If Kouchaki and Smith’s findings that cheating and dishonesty increases in the late afternoons applies to both morning and evening chronotype folks, then the evening chronotypes (“owls”) are in a bit of a pickle. Their peak performance and alertness times would overlap with their propensity to be dishonest. The researchers Brian Gunia, Christopher Barnes and Sunita Sah therefore decided to replicate the Kouchaki and Smith study with one major modification: They not only assessed the propensity to cheat at different times of the day, they also measured the chronotypes of the study participants. Their recent paper “”The Morality of Larks and Owls: Unethical Behavior Depends on Chronotype as Well as Time of Day” confirms that Kouchaki and Smith findings that the time of the day influences honesty, but the observed effects differ among chronotypes.

After assessing the chronotypes of 142 participants (72 women, 70 men; mean age 30 years), the researchers randomly assigned them to either a morning session (7:00 to 8:30 am) or an evening session (12:00 am to 1:30 am). The participants were asked to report the outcome of a die roll; the higher the reported number, the more raffle tickets they would receive for a large prize, which served as an incentive to inflate the outcome of the roll. Since a die roll is purely random, one would expect that reported average of the die roll results would be similar across all groups if all participants were honest. Their findings: Morning people (“larks”) tended to report higher die-roll numbers in the evening than in the morning – thus supporting the Kouchaki and Smith results- but evening people tended to report higher numbers in the morning than in the evening. This means that the morning morality effect and the idea of “moral exhaustion” towards the end of the day cannot be generalized to all. In fact, evening people (“owls”) are more honest in the evenings.

Not so fast, say Kouchaki and Smith in a commentary published to together with the new paper by Gunia and colleagues. They applaud the new study for taking the analysis of daytime effects on cheating one step further by considering the chronotypes of the participants, but they also point out some important limitations of the newer study. Gunia and colleagues only included morning and evening people in their analysis and excluded the participants who reported an intermediate chronotype, i.e. not quite early morning “larks” and not true “owls”. This is a valid criticism because newer research on chronotypes by Till Roenneberg and his colleagues at the University of Munich has shown that there is a Gaussian distribution of chronotypes. Few of us are extreme larks or extreme owls, most of us lie on a continuum.  Roenneberg’s approach to measuring chronotypes looks at the actual hours of sleep we get and distinguishes between our behaviors on working days and weekends because the latter may provide a better insight into our endogenous clock, unencumbered by the demands of our work schedule. The second important limitation identified by Kouchaki and Smith is that Gunia and colleagues used 12 am to 1:30 am as the “evening condition”. This may be the correct time to study the peak performance of extreme owls and selected night shift workers but ascertaining cheating behavior at this hour is not necessarily relevant for the general workforce.

Neither the study by Kouchaki and Smith nor the new study by Gunia and colleagues provide us with a definitive answer as to how the external time of the day (the time according to the sun and our social environment) and the internal time (the time according to our internal circadian clock) affect moral decision-making. We need additional studies with larger sample sizes which include a broad range of participants with varying chronotypes as well as studies which assess moral decision-making not just at two time points but also include a range of time points (early morning, afternoon, late afternoon, evening, night, etc.). But the two studies have opened up a whole new area of research and their findings are quite relevant for the field of experimental philosophy, which uses psychological methods to study philosophical questions. If empirical studies are conducted with human subjects then researchers need to take into account the time of the day and the internal time and chronotype of the participants, as well as other physiological differences between individuals.

The exchange between Kouchaki & Smith and Gunia & colleagues also demonstrates the strength of rigorous psychological studies. Researcher group 1 makes a highly provocative assertion based on their data, researcher group 2 partially replicates it and qualifies it by introducing one new variable (chronotypes) and researcher group 1 then analyzes strengths and weaknesses of the newer study. This type of constructive criticism and dialogue is essential for high-quality research. Hopefully, future studies will be conducted to provide more insights into this question. By using the Roenneberg approach to assess chronotypes, one could potentially assess a whole continuum of chronotypes – both on working days and weekends – and also relate moral reasoning to the amount of sleep we get. Measurements of body temperature, hormone levels, brain imaging and other biological variables may provide further insight into how the time of day affects our moral reasoning.

Why is this type of research important? I think that realizing how dynamic moral judgment can be is a humbling experience. It is easy to condemn the behavior of others as “immoral”, “unethical” or “dishonest” as if these are absolute pronouncements. Realizing that our own judgment of what is considered ethical or acceptable can vary because of our internal clock or the external time of the day reminds us to be less judgmental and more appreciative of the complex neurobiology and physiology which influence moral decision-making. If future studies confirm that the internal time (and possibly sleep deprivation) influences moral decision-making, then we need to carefully rethink whether the status quo of forcing people with diverse chronotypes into a compulsory 9-to-5 workday is acceptable. Few, if any, employers and schools have adapted their work schedules to accommodate chronotype diversity in human society. Understanding that individualized work schedules for people with diverse chronotypes may not only increase their overall performance but also increase their honesty might serve as another incentive for employers and schools to recognize the importance of chronotype diversity among individuals.

References:

Brian C. Gunia, Christopher M. Barnes and Sunita Sah (2014) “The Morality of Larks and Owls: Unethical Behavior Depends on Chronotype as Well as Time of Day“, Psychological Science (published online ahead of print on Oct 6, 2014).

Maryam Kouchaki and Isaac H. Smith (2014) “The Morning Morality Effect: The Influence of Time of Day on Unethical Behavior“, Psychological Science 25(1) 95–102.

Till Roenneberg, Anna Wirz-Justice and Martha Merrow. (2003) “Life between clocks: daily temporal patterns of human chronotypes.” Journal of Biological Rhythms 18:1: 80-90.

 

Note: An earlier version of this article was first published on the 3Quarksdaily blog.

 

ResearchBlogging.org
Gunia BC, Barnes CM, & Sah S (2014). The Morality of Larks and Owls: Unethical Behavior Depends on Chronotype as Well as Time of Day. Psychological science PMID: 25287664

The Road to Bad Science Is Paved with Obedience and Secrecy

We often laud intellectual diversity of a scientific research group because we hope that the multitude of opinions can help point out flaws and improve the quality of research long before it is finalized and written up as a manuscript. The recent events surrounding the research in one of the world’s most famous stem cell research laboratories at Harvard shows us the disastrous effects of suppressing diverse and dissenting opinions.

Cultured cells via Shutterstock
Cultured cells via Shutterstock

The infamous “Orlic paper” was a landmark research article published in the prestigious scientific journal Nature in 2001, which showed that stem cells contained in the bone marrow could be converted into functional heart cells. After a heart attack, injections of bone marrow cells reversed much of the heart attack damage by creating new heart cells and restoring heart function. It was called the “Orlic paper” because the first author of the paper was Donald Orlic, but the lead investigator of the study was Piero Anversa, a professor and highly respected scientist at New York Medical College.

Anversa had established himself as one of the world’s leading experts on the survival and death of heart muscle cells in the 1980s and 1990s, but with the start of the new millennium, Anversa shifted his laboratory’s focus towards the emerging field of stem cell biology and its role in cardiovascular regeneration. The Orlic paper was just one of several highly influential stem cell papers to come out of Anversa’s lab at the onset of the new millenium. A 2002 Anversa paper in the New England Journal of Medicine – the world’s most highly cited academic journal –investigated the hearts of human organ transplant recipients. This study showed that up to 10% of the cells in the transplanted heart were derived from the recipient’s own body. The only conceivable explanation was that after a patient received another person’s heart, the recipient’s own cells began maintaining the health of the transplanted organ. The Orlic paper had shown the regenerative power of bone marrow cells in mouse hearts, but this new paper now offered the more tantalizing suggestion that even human hearts could be regenerated by circulating stem cells in their blood stream.

Woman having a heart attack via Shutterstock
Woman having a heart attack via Shutterstock

2003 publication in Cell by the Anversa group described another ground-breaking discovery, identifying a reservoir of stem cells contained within the heart itself. This latest coup de force found that the newly uncovered heart stem cell population resembled the bone marrow stem cells because both groups of cells bore the same stem cell protein called c-kit and both were able to make new heart muscle cells. According to Anversa, c-kit cells extracted from a heart could be re-injected back into a heart after a heart attack and regenerate more than half of the damaged heart!

These Anversa papers revolutionized cardiovascular research. Prior to 2001, most cardiovascular researchers believed that the cell turnover in the adult mammalian heart was minimal because soon after birth, heart cells stopped dividing. Some organs or tissues such as the skin contained stem cells which could divide and continuously give rise to new cells as needed. When skin is scraped during a fall from a bike, it only takes a few days for new skin cells to coat the area of injury and heal the wound. Unfortunately, the heart was not one of those self-regenerating organs. The number of heart cells was thought to be more or less fixed in adults. If heart cells were damaged by a heart attack, then the affected area was replaced by rigid scar tissue, not new heart muscle cells. If the area of damage was large, then the heart’s pump function was severely compromised and patients developed the chronic and ultimately fatal disease known as “heart failure”.

Anversa’s work challenged this dogma by putting forward a bold new theory: the adult heart was highly regenerative, its regeneration was driven by c-kit stem cells, which could be isolated and used to treat injured hearts. All one had to do was harness the regenerative potential of c-kit cells in the bone marrow and the heart, and millions of patients all over the world suffering from heart failure might be cured. Not only did Anversa publish a slew of supportive papers in highly prestigious scientific journals to challenge the dogma of the quiescent heart, he also happened to publish them at a unique time in history which maximized their impact.

In the year 2001, there were few innovative treatments available to treat patients with heart failure. The standard approach was to use medications that would delay the progression of heart failure. But even the best medications could not prevent the gradual decline of heart function. Organ transplants were a cure, but transplantable hearts were rare and only a small fraction of heart failure patients would be fortunate enough to receive a new heart. Hopes for a definitive heart failure cure were buoyed when researchers isolated human embryonic stem cells in 1998. This discovery paved the way for using highly pliable embryonic stem cells to create new heart muscle cells, which might one day be used to restore the heart’s pump function without  resorting to a heart transplant.

 

Human heart jigsaw puzzle via Shutterstock
Human heart jigsaw puzzle via Shutterstock

The dreams of using embryonic stem cells to regenerate human hearts were soon squashed when the Bush administration banned the generation of new human embryonic stem cells in 2001, citing ethical concerns. These federal regulations and the lobbying of religious and political groups against human embryonic stem cells were a major blow to research on cardiovascular regeneration. Amidst this looming hiatus in cardiovascular regeneration, Anversa’s papers appeared and showed that one could steer clear of the ethical controversies surrounding embryonic stem cells by using an adult patient’s own stem cells. The Anversa group re-energized the field of cardiovascular stem cell research and cleared the path for the first human stem cell treatments in heart disease.

Instead of having to wait for the US government to reverse its restrictive policy on human embryonic stem cells, one could now initiate clinical trials with adult stem cells, treating heart attack patients with their own cells and without having to worry about an ethical quagmire. Heart failure might soon become a disease of the past. The excitement at all major national and international cardiovascular conferences was palpable whenever the Anversa group, their collaborators or other scientists working on bone marrow and cardiac stem cells presented their dizzyingly successful results. Anversa received numerous accolades for his discoveries and research grants from the NIH (National Institutes of Health) to further develop his research program. He was so successful that some researchers believed Anversa might receive the Nobel Prize for his iconoclastic work which had redefined the regenerative potential of the heart. Many of the world’s top universities were vying to recruit Anversa and his group, and he decided to relocate his research group to Harvard Medical School and Brigham and Women’s Hospital 2008.

There were naysayers and skeptics who had resisted the adult stem cell euphoria. Some researchers had spent decades studying the heart and found little to no evidence for regeneration in the adult heart. They were having difficulties reconciling their own results with those of the Anversa group. A number of practicing cardiologists who treated heart failure patients were also skeptical because they did not see the near-miraculous regenerative power of the heart in their patients. One Anversa paper went as far as suggesting that the whole heart would completely regenerate itself roughly every 8-9 years, a claim that was at odds with the clinical experience of practicing cardiologists.  Other researchers pointed out serious flaws in the Anversa papers. For example, the 2002 paper on stem cells in human heart transplant patients claimed that the hearts were coated with the recipient’s regenerative cells, including cells which contained the stem cell marker Sca-1. Within days of the paper’s publication, many researchers were puzzled by this finding because Sca-1 was a marker of mouse and rat cells – not human cells! If Anversa’s group was finding rat or mouse proteins in human hearts, it was most likely due to an artifact. And if they had mistakenly found rodent cells in human hearts, so these critics surmised, perhaps other aspects of Anversa’s research were similarly flawed or riddled with artifacts.

At national and international meetings, one could observe heated debates between members of the Anversa camp and their critics. The critics then decided to change their tactics. Instead of just debating Anversa and commenting about errors in the Anversa papers, they invested substantial funds and efforts to replicate Anversa’s findings. One of the most important and rigorous attempts to assess the validity of the Orlic paper was published in 2004, by the research teams of Chuck Murry and Loren Field. Murry and Field found no evidence of bone marrow cells converting into heart muscle cells. This was a major scientific blow to the burgeoning adult stem cell movement, but even this paper could not deter the bone marrow cell champions.

Despite the fact that the refutation of the Orlic paper was published in 2004, the Orlic paper continues to carry the dubious distinction of being one of the most cited papers in the history of stem cell research. At first, Anversa and his colleagues would shrug off their critics’ findings or publish refutations of refutations – but over time, an increasing number of research groups all over the world began to realize that many of the central tenets of Anversa’s work could not be replicated and the number of critics and skeptics increased. As the signs of irreplicability and other concerns about Anversa’s work mounted, Harvard and Brigham and Women’s Hospital were forced to initiate an internal investigation which resulted in the retraction of one Anversa paper and an expression of concern about another major paper. Finally, a research group published a paper in May 2014 using mice in which c-kit cells were genetically labeled so that one could track their fate and found that c-kit cells have a minimal – if any – contribution to the formation of new heart cells: a fraction of a percent!

The skeptics who had doubted Anversa’s claims all along may now feel vindicated, but this is not the time to gloat. Instead, the discipline of cardiovascular stem cell biology is now undergoing a process of soul-searching. How was it possible that some of the most widely read and cited papers were based on heavily flawed observations and assumptions? Why did it take more than a decade since the first refutation was published in 2004 for scientists to finally accept that the near-magical regenerative power of the heart turned out to be a pipe dream.

One reason for this lag time is pretty straightforward: It takes a tremendous amount of time to refute papers. Funding to conduct the experiments is difficult to obtain because grant funding agencies are not easily convinced to invest in studies replicating existing research. For a refutation to be accepted by the scientific community, it has to be at least as rigorous as the original, but in practice, refutations are subject to even greater scrutiny. Scientists trying to disprove another group’s claim may be asked to develop even better research tools and technologies so that their results can be seen as more definitive than those of the original group. Instead of relying on antibodies to identify c-kit cells, the 2014 refutation developed a transgenic mouse in which all c-kit cells could be genetically traced to yield more definitive results – but developing new models and tools can take years.

The scientific peer review process by external researchers is a central pillar of the quality control process in modern scientific research, but one has to be cognizant of its limitations. Peer review of a scientific manuscript is routinely performed by experts for all the major academic journals which publish original scientific results. However, peer review only involves a “review”, i.e. a general evaluation of major strengths and flaws, and peer reviewers do not see the original raw data nor are they provided with the resources to replicate the studies and confirm the veracity of the submitted results. Peer reviewers rely on the honor system, assuming that the scientists are submitting accurate representations of their data and that the data has been thoroughly scrutinized and critiqued by all the involved researchers before it is even submitted to a journal for publication. If peer reviewers were asked to actually wade through all the original data generated by the scientists and even perform confirmatory studies, then the peer review of every single manuscript could take years and one would have to find the money to pay for the replication or confirmation experiments conducted by peer reviewers. Publication of experiments would come to a grinding halt because thousands of manuscripts would be stuck in the purgatory of peer review. Relying on the integrity of the scientists submitting the data and their internal review processes may seem naïve, but it has always been the bedrock of scientific peer review. And it is precisely the internal review process which may have gone awry in the Anversa group.

Just like Pygmalion fell in love with Galatea, researchers fall in love with the hypotheses and theories that they have constructed. To minimize the effects of these personal biases, scientists regularly present their results to colleagues within their own groups at internal lab meetings and seminars or at external institutions and conferences long before they submit their data to a peer-reviewed journal. The preliminary presentations are intended to spark discussions, inviting the audience to challenge the veracity of the hypotheses and the data while the work is still in progress. Sometimes fellow group members are truly skeptical of the results, at other times they take on the devil’s advocate role to see if they can find holes in their group’s own research. The larger a group, the greater the chance that one will find colleagues within a group with dissenting views. This type of feedback is a necessary internal review process which provides valuable insights that can steer the direction of the research.

Considering the size of the Anversa group – consisting of 20, 30 or even more PhD students, postdoctoral fellows and senior scientists – it is puzzling why the discussions among the group members did not already internally challenge their hypotheses and findings, especially in light of the fact that they knew extramural scientists were having difficulties replicating the work.

Retraction Watch is one of the most widely read scientific watchdogs which tracks scientific misconduct and retractions of published scientific papers. Recently, Retraction Watch published the account of an anonymous whistleblower who had worked as a research fellow in Anversa’s group and provided some unprecedented insights into the inner workings of the group, which explain why the internal review process had failed:

“I think that most scientists, perhaps with the exception of the most lucky or most dishonest, have personal experience with failure in science—experiments that are unreproducible, hypotheses that are fundamentally incorrect. Generally, we sigh, we alter hypotheses, we develop new methods, we move on. It is the data that should guide the science.

 In the Anversa group, a model with much less intellectual flexibility was applied. The “Hypothesis” was that c-kit (cd117) positive cells in the heart (or bone marrow if you read their earlier studies) were cardiac progenitors that could: 1) repair a scarred heart post-myocardial infarction, and: 2) supply the cells necessary for cardiomyocyte turnover in the normal heart.

 This central theme was that which supplied the lab with upwards of $50 million worth of public funding over a decade, a number which would be much higher if one considers collaborating labs that worked on related subjects.

 In theory, this hypothesis would be elegant in its simplicity and amenable to testing in current model systems. In practice, all data that did not point to the “truth” of the hypothesis were considered wrong, and experiments which would definitively show if this hypothesis was incorrect were never performed (lineage tracing e.g.).”

Discarding data that might have challenged the central hypothesis appears to have been a central principle.

 

Hood over screen - via Shutterstock
Hood over screen – via Shutterstock

According to the whistleblower, Anversa’s group did not just discard undesirable data, they actually punished group members who would question the group’s hypotheses:

In essence, to Dr. Anversa all investigators who questioned the hypothesis were “morons,” a word he used frequently at lab meetings. For one within the group to dare question the central hypothesis, or the methods used to support it, was a quick ticket to dismissal from your position.

The group also created an environment of strict information hierarchy and secrecy which is antithetical to the spirit of science:

“The day to day operation of the lab was conducted under a severe information embargo. The lab had Piero Anversa at the head with group leaders Annarosa Leri, Jan Kajstura and Marcello Rota immediately supervising experimentation. Below that was a group of around 25 instructors, research fellows, graduate students and technicians. Information flowed one way, which was up, and conversation between working groups was generally discouraged and often forbidden.

 Raw data left one’s hands, went to the immediate superior (one of the three named above) and the next time it was seen would be in a manuscript or grant. What happened to that data in the intervening period is unclear.

 A side effect of this information embargo was the limitation of the average worker to determine what was really going on in a research project. It would also effectively limit the ability of an average worker to make allegations regarding specific data/experiments, a requirement for a formal investigation.

This segregation of information is a powerful method to maintain an authoritarian rule and is more typical for terrorist cells or intelligence agencies than for a scientific lab, but it would definitely explain how the Anversa group was able to mass produce numerous irreproducible papers without any major dissent from within the group.

In addition to the secrecy and segregation of information, the group also created an atmosphere of fear to ensure obedience:

“Although individually-tailored stated and unstated threats were present for lab members, the plight of many of us who were international fellows was especially harrowing. Many were technically and educationally underqualified compared to what might be considered average research fellows in the United States. Many also originated in Italy where Dr. Anversa continues to wield considerable influence over biomedical research.

 This combination of being undesirable to many other labs should they leave their position due to lack of experience/training, dependent upon employment for U.S. visa status, and under constant threat of career suicide in your home country should you leave, was enough to make many people play along.

 Even so, I witnessed several people question the findings during their time in the lab. These people and working groups were subsequently fired or resigned. I would like to note that this lab is not unique in this type of exploitative practice, but that does not make it ethically sound and certainly does not create an environment for creative, collaborative, or honest science.”

Foreign researchers are particularly dependent on their employment to maintain their visa status and the prospect of being fired from one’s job can be terrifying for anyone.

This is an anonymous account of a whistleblower and as such, it is problematic. The use of anonymous sources in science journalism could open the doors for all sorts of unfounded and malicious accusations, which is why the ethics of using anonymous sources was heavily debated at the recent ScienceOnline conference. But the claims of the whistleblower are not made in a vacuum – they have to be evaluated in the context of known facts. The whistleblower’s claim that the Anversa group and their collaborators received more than $50 million to study bone marrow cell and c-kit cell regeneration of the heart can be easily verified at the public NIH grant funding RePORTer website. The whistleblower’s claim that many of the Anversa group’s findings could not be replicated is also a verifiable fact. It may seem unfair to condemn Anversa and his group for creating an atmosphere of secrecy and obedience which undermined the scientific enterprise, caused torment among trainees and wasted millions of dollars of tax payer money simply based on one whistleblower’s account. However, if one looks at the entire picture of the amazing rise and decline of the Anversa group’s foray into cardiac regeneration, then the whistleblower’s description of the atmosphere of secrecy and hierarchy seems very plausible.

The investigation of Harvard into the Anversa group is not open to the public and therefore it is difficult to know whether the university is primarily investigating scientific errors or whether it is also looking into such claims of egregious scientific misconduct and abuse of scientific trainees. It is unlikely that Anversa’s group is the only group that might have engaged in such forms of misconduct. Threatening dissenting junior researchers with a loss of employment or visa status may be far more common than we think. The gravity of the problem requires that the NIH – the major funding agency for biomedical research in the US – should look into the prevalence of such practices in research labs and develop safeguards to prevent the abuse of science and scientists.

 

Note: An earlier version of this article was first published on 3quarksdaily.com.