How Often Do Books Mention Scientists and Researchers?

Here is a graphic showing the usage of the words “scientists”, “researchers”, “soldiers” in English-language books published in 1900-2008. The graphic was generated using the Google N-gram Viewer which scours all digitized books in the Google database for selected words and assesses the relative word usage frequencies.

Ngram

 

(You can click on the chart to see a screen shot or on this link for the N-gram Viewer)

It is depressing that soldiers are mentioned more frequently than scientists or researchers (even when the word frequencies of “scientists” and “researchers” are combined) in English-language books even though the numbers of researchers in the countries which produce most English-language books are comparable or higher than the number of soldiers.

Here are the numbers of researchers (data from the 2010 UNESCO Science report, numbers are reported for the year 2007, PDF) in selected English-language countries and the corresponding numbers of armed forces personnel (data from the World Bank, numbers reported for 2012):

United States: 1.4 million researchers vs. 1.5 million armed forces personnel
United Kingdom: 255,000 researchers vs. 169,000 armed forces personnel
Canada: 139,000 researchers vs. 66,000 armed forces personnel

I find it disturbing that our books – arguably one of our main cultural legacies – give a disproportionately greater space to discussing or describing the military than to our scientific and scholarly endeavors. But I am even more worried about the recent trends. The N-gram Viewer evaluates word usage up until 2008, and “soldiers” has been steadily increasing since the 1990s. The usage of “scientists” and “researchers” has reached a plateau and is now decreasing. I do not want to over-interpret the importance of relative word frequencies as indicators of society’s priorities, but the last two surges of “soldiers” usage occurred during the two World Wars and in 2008, “soldiers” was used as frequently as during the first years of World War II.

It is mind-boggling for us scientists that we have to struggle to get funding for research which has the potential to transform society by providing important new insights into the nature of our universe, life on this planet, our environment and health, whereas the military receives substantially higher amounts of government funding (at least in the USA) for its destructive goals. Perhaps one reason for this discrepancy is that voters hear, see and read much more about wars and soldiers than about science and research. Depictions of heroic soldiers fighting evil make it much easier for voters to go along with allocation of resources to the military. Most of my non-scientist friends can easily name books or movies about soldiers, but they would have a hard time coming up with books and movies about science and scientists. My take-home message from the N-gram Viewer results is that scientists have an obligation to reach out to the public and communicate the importance of science in an understandable manner if they want to avoid the marginalization of science.

Some Highlights of the Live Chat: “Are We Doing Science the Right Way?”

On February 7, 2013, ScienceNOW organized a Live Chat with the microbiologists Ferric Fang and Arturo Casadevall that was moderated by the Science staff writer Jennifer Couzin-Frankel and discussed a very broad range of topics related to how we currently conduct science. For those who could not participate in the Live Chat, I will summarize some key comments made by Fang and Casadevall, Couzin-Frankel or other commenters.

 

I have grouped the comments into key themes and also added some of my own thoughts.

 

1. Introduction to the goals of the Live Chat:

Jennifer Couzin-Frankel: …..For several years (at least) researchers have worried about where their profession is heading. As much as most of them love working in the lab, they’re also facing sometimes extreme pressure to land grants and publish hot papers. And surveys have shown that a subset are even bending or breaking the rules to accomplish that.….With us today are two guests who are studying the “science of science” together, and considering how to nurture discovery and reduce misconduct…

 

Pressure to publish, the difficulties to obtain grant funding, scientific misconduct – these are all topics that should be of interest to all of us who are actively engaged in science.

 

2. Science funding:

Ferric Fang: ….the way in which science is funded has a profound effect on how and what science is done. Paula Stephan has recently written an excellent book on this subject called “How Economics Shapes Science.”

Ferric Fang: Many are understandably reluctant to ask for more funding given the global recession and halting recovery. But I believe a persuasive economic case can be made for greater investment in R&D paying off in the long run. Paula Stephan notes that the U.S. spends twice as much on beer as on science each year.

 

These are great points. I often get the sense that federal funding for science and education is portrayed as an unnecessary luxury, charity or a form of waste. We have to remind people that investments in science and education are a very important investment with long-term returns.

 

3. Reproducibility and the self-correcting nature of science:

Arturo Casadevall: Is science self-correcting? Yes and No. In areas where there is a lot of interest in a subject experiments will be repeated and bad science will be ferreted out. However, until someone sets out to repeat an experiment we do not know whether it is reproducible. We do not know what percentage of the literature is right because no one has ever done a systematic study to see what fraction is reproducible.

 

I think that the reproducibility crisis is one of the biggest challenges for contemporary science. Thousands of scientific papers are published every day, and only a tiny fraction of them will ever be tested for reproducibility. There is minimal funding for attempting to replicate published data and also very little incentive for scientists, because even if they are able to replicate the published work, they will have a hard time publishing a confirmatory study. The lack of attempts to replicate scientific data creates a lot of uncertainty, because we do not really know, how much of the published data is truly valid.

 

Comment From David R Van Houten: …The absence of these weekly [lab] meetings was the single biggest factor allowing for the data fabrication and falsification that I observed 20 years ago as a PhD student. I pushed to get these meetings organized, and when they did occur, it made it easier to get the offender to stop, and easier to “salvage” original data…

 

I agree that regular lab meetings and more supervision by senior researchers and principal investigators can help contain and prevent data fabrication and falsification. However, overt data fabrication and fraud are probably not as common as “data fudging”, where experiments or data points are conveniently ignored because they do not fit the desired model. This kind of “data fudging” is not just a problem of junior scientists, but also occurs with senior scientists.

 

Ferric Fang: Peer review plays an important role in self-correction of science but as nearly everyone recognizes, it is not perfect. Mechanisms of post-publication review to address the problems are very important– these include errata, retractions, correspondences, follow up publications, and nowadays, public discussion on blogs and other websites.

 

I am glad that Fang (who is an editor-in-chief of an academic journal) recognizes the importance of post-publication review, and mentions blog discussions as one such form of post publication review.

 

4. Are salaries of scientists too low?

Comment From Shabbir: When an hedge fund manager makes 100 times more than a theoretical physicist, how can we expect the bright minds to go to science?

 

I agree that academic salaries for scientists are on the lower side, especially when compared with the salary that one can make in the private industry. However, I do not think that obscene salaries of hedge fund managers are the correct comparison. If the US wants to attract and retain excellent scientists, raising their salaries is definitely important. Scientists are routinely over-worked, balancing their research work, teaching, mentoring and administrative duties and receive very inadequate compensation. I have also observed a near-cynical attitude of many elite universities, which try to portray working as a scientist as an “honor” that should not require much compensation. This kind of abuse really needs to end.

 

5. Communicating science to the public

Arturo Casadevall: … Many scientists cannot explain their work at a dinner party and keep the other guests interested. We are passionate about what we do but we are often terrible in communicating the excitement that we feel. I think this is one area where perhaps better public communicating skills are needed and maybe some attention should be given to mastering these arts in training.

 

I could not agree more. Communicating science should be part of every PhD program, postdoctoral training and an ongoing effort when a scientist becomes an independent principal investigator.

 

6. Are we focusing on quantity rather than quality in science?

Ferric Fang: …. There are now in excess of 50,000,000 scientific publications according to one estimate, and we are in danger of creating a Library of Babel in which it is impossible to find the truth buried amidst poor quality or unimportant publications. This is in part a consequence of the “publish or perish” mentality in academia. A focus on quality rather than quantity in promotion decisions might help.

 

It is correct that the amount of scientific data being generated is overwhelming, but I am not sure that there is an easy way to find the “truth”. Scientific “truth” is very dynamic and I think it is becoming more and more difficult to publish in the high impact journals. A typical paper in a high-impact journal now has anywhere between 5 and 20 supplemental figures and tables, and that same paper could have been published as two or three separate papers just a few decades ago. We now just have many more active scientists all over the world that have begun publishing in English and we all have tools that generate huge amounts of data in a matter of weeks (such as microarrays, proteomics and metabolomics). It is likely that the number of publications will continue to rise in the next years and we need to come up with an innovative system to manage scientific information. Hopefully, scientists will realize that managing and evaluating existing scientific information is just as valuable as generating new scientific datasets.

 

This was a great and inspiring discussion and I look forward to other such Live Chat events.