Let Them Make My Cake: Exporting Burden, Importing Convenience in the Externalization Society

On 5 November 2015, an iron ore tailings dam burst in Bento Rodrigues near the Brazilian city of Mariana, releasing 60 million cubic meters of a reddish-brown mud-flood. This toxic flood buried neighboring villages and flowed into the Rio Doce, contaminating the river with several hazardous metals including mercury, arsenic and chromium as well as potentially harmful bacteria. The devastating and perhaps irreparable damage to the ecosystem and human health caused by this incident are the reason why it is seen as one of the biggest environmental disasters in the history of Brazil. The German sociologist Stephan Lessenich uses this catastrophe as a starting point to introduce the concept of the Externalisierungsgesellschaft(externalization society) in his book Neben uns die Sintflut: Die Externalisierungsgesellschaft und ihr Preis (“Around us, the deluge: The externalization society and its cost”).

What is the externalization society? According to Lessenich, this expression describes how developed countries such as the United States, Japan and Germany transfer or externalize risks and burdens to developing countries in South America, Africa and Asia. The Bento Rodrigues disaster is an example of the environmental risk that is externalized. Extracting metals that are predominantly used by technology-hungry consumers in developed countries invariably generates toxic waste which poses a great risk for the indigenous population of many developing countries. The externalized environmental risks are not limited to those associated with mining raw materials. The developed world is also increasingly exporting its trash into the third world.

The US, for example, are the world’s largest exporter of paper trash, exporting scrap paper worth US$ 3.1 billion each year. The US is also the largest producer of electronic waste (E-Waste), estimated at more than 7 million tons of E-Waste per year (PDF). Every new smartphone or tablet release generates mountains of E-Waste as consumers discard their older devices. Re-cycling the older devices sounds like a reasonable solution bu true recycling and re-using of electronic components is quite costly and time-consuming. It is also often not clear which electronic components of devices actually get recycled. To track the fate of discarded electronic devices, Jim Puckett from the Basel Action Network and his colleagues placed GPS-trackers in old electronics dropped off at US-based recycling centers. They found that a third of the “recycled” electronics were shipped overseas to countries such as Mexico, Taiwan, China, Pakistan, Thailand and Kenya. Puckett used the GPS signal to identify the sites where the E-Waste ended up and visited such a location in Hong Kong, where he found that the “recycled” electronics were being dismantled in junkyards by migrant workers from mainland China who were not wearing any protective clothing that would have protected them from hazardous materials released during the extraction of salvageable E-Waste materials. There are many regulations that restrict the trading of E-Waste but the United Nations Environment Program (UNEP) estimates that up to 90% of the world’s E-Waste is traded or dumped illegally. This means that even though dropping off old devices at a recycling center may alleviate the conscience of consumers, a significant number of these will not be re-used but instead shipped off to junkyards in other countries – without appropriate monitoring of how these electronic waste products will affect the local environment and health of the population.

Exporting environmental risks to developing countries by either outsourcing high-risk extraction of raw materials or simply dumping waste is just one example of externalization according the Lessenich. Externalizing occupational health risks and poverty by severely under-paying workers are other examples. Bangladesh has now emerged as one of the world’s largest manufacturers of clothing because of its cheap labor. In 2011, the typical monthly wage of a garment industry worker in Bangladesh was estimated at $91 per month – roughly one and a half dollars per day! In addition to this dismally low pay, garment factory workers in Bangladesh also face terrible occupational risks. The collapse of the Rana Plaza garment factory building in 2013 which called over 1,100 people and injured more than 2,500 people is just one example of the occupational risks faced by the workers.

Lessenich’s concept of the externalization society isn’t just another critique of the global inequality that we so often hear about. The fundamental principle of the externalization society put forth by Lessenich is the interdependence between the “imperial lifestyle” of wealth and comfort in the developed world and the “wretched lifestyle” of poverty and hardship in the developing world. If those of us who live in the developed world want the convenience of upgrading our smartphones every few years or buying cheap cotton t-shirts, then we need those who manufacture these products in the developing world to be paid lousy wages. If those workers were paid humane wages and their employers instituted appropriate occupational safety measures, as well as health and disability insurance plans that are routine in most parts of the developed world, then the cost of the products would be incompatible with our current economy and lifestyle which are fueled by consumerism and the capitalist imperative of incessant growth.

The pillars of the externalization society are indifference and ignorance. We are indifferent because we see the differential in lifestyle as a Selbstverständlichkeit – a German word for obviousness or taken-for-grantedness. They were born in developing countries, so of course they have to struggle – tough luck, they ended up with the wrong lottery tickets. This Selbstverständlichkeit also extends to the limited mobility of the people born in the developing world. They lack the birthright of the developing world citizens whose passports allow them to either travel visa-free or obtain a visa to nearly any country in the world with minimal effort. This veneer of Selbstverständlichkeit is easiest to maintain if “they” and “their” problems are invisible and thus allow us to ignore the interdependence between our good fortune and their misery. We might see images of the toxic flood in Brazil but few, if any, members of the externalization society will link the mining of cheap iron in Brazil to the utensils they use in their everyday life.

A decade ago, disposable single-use coffee pods such as the Keurig K-cups or the Nespresso pods were extremely rare but by 2014, K-cup manufactures sold a mind-boggling 9 billion K-cups! A new need for disposable products that had previously been met by standard coffee machines arose without considering the environmental and global impact of this need. In theory, the K-cups are recyclable but this would require careful separating of the paper, plastic and the aluminum top. It is not clear how many K-cups are properly recycled, and the E-Waste example shows that even if items are transported to recycling centers, that does not necessarily mean that they will be successfully recycled. Prior to the advent coffee pods, our coffee demands had been easily met without generating additional mountains of disposable plastic and aluminum coffee pod trash. Out of nowhere, there arose a new need for aluminum which again is extracted from the aluminum ore bauxite – another process that generates toxic waste. Instead of feeling a sense of absolution when we drop a disposable item into a recycling bin, we should simply curtail unnecessary consumption of products in disposable containers.

How do we overcome the externalization society? We can make concerted efforts through advocacy, education and regulations that restrict exporting environmental waste, improve health and safety conditions for workers in the developing world and try to restrict our consumerist excesses by clarifying the interdependence between wealth in the externalization society and the poverty in the developing world as well as the moral imperative to abrogate the inequality and asymmetry. Numerous advocates have already attempted this approach for the past decades with limited success. Maybe instead of appealing to the ethics of interdependence, a more effective approach may be to educate each other about the consequences of the interdependence. When millions of refugees show up at the doorstep of the externalization society, “they” are no longer invisible. One can blame wars, religious extremism and political ideologies for the misery of the refugees but it becomes harder to ignore the extent and central role of the underlying inequality. Creating humane working and living conditions for people in the developing world is perhaps the most effective way to stop the so-called “refugee crisis“.

Global climate change is another threat to the externalization society, a threat of its own making. Transferring carbon footprints and pollution to other countries does not change the fact that the whole planet is suffering from the consequences of climate change. Political leaders of the externalization society often demand the closing of borders, erecting walls and expanding their armed forces so they are less likely to have to confront the victims of their externalization but no army or wall is strong enough to lower the rising water levels or stabilize the climate. The externalization society will end not because of a crisis of conscience but because its excesses are undermining its own existence.


Lessenich, S. (2016). Neben uns die Sintflut: Die Externalisierungsgesellschaft und ihr Preis. Hanser Berlin.


Note: An earlier version of this article was first published on the 3Quarksdaily blog.

Should Biologists be Guided by Beauty?

Lingulodinium polyedrum is a unicellular marine organism which belongs to the dinoflagellate group of algae. Its genome is among the largest found in any species on this planet, estimated to contain around 165 billion DNA base pairs – roughly fifty times larger than the size of the human genome. Encased in magnificent polyhedral shells, these bioluminescent algae became important organisms to study biological rhythms. Each Lingulodinium polyedrum cell contains not one but at least two internal clocks which keep track of time by oscillating at a frequency of approximately 24 hours. Algae maintained in continuous light for weeks continue to emit a bluish-green glow at what they perceive as night-time and swim up to the water surface during day-time hours – despite the absence of any external time cues. When I began studying how nutrients affect the circadian rhythms of these algae as a student at the University of Munich, I marveled at the intricacy and beauty of these complex time-keeping mechanisms that had evolved over hundreds of millions of years.

Lingulodinium polyedrum (scanning electron micrograph)
Lingulodinium polyedrum (scanning electron micrograph) – Credit: FWC Fish and Wildlife Research Institute (via Flickr)


I was prompted to revisit the role of Beauty in biology while reading a masterpiece of scientific writing, “Dreams of a Final Theory” by the Nobel laureate Steven Weinberg in which he describes how the search for Beauty has guided him and many fellow theoretical physicists to search for an ultimate theory of the fundamental forces of nature. Weinberg explains that it is quite difficult to precisely define what constitutes Beauty in physics but a physicist would nevertheless recognize it when she sees it.Over the course of a quarter of a century, I have worked in a variety of biological fields, from these initial experiments in marine algae to how stem cells help build human blood vessels and how mitochondria in a cell fragment and reconnect as cells divide. Each project required its own set of research methods and techniques, each project came with its own failures and successes. But with each project, my sense of awe for the beauty of nature has grown. Evolution has bestowed this planet with such an amazing diversity of life-forms and biological mechanisms, allowing organisms to cope with the unique challenges that they face in their respective habitats. But it is only recently that I have become aware of the fact that my sense of biological beauty was a post hoc phenomenon: Beauty was what I perceived after reviewing the experimental findings; I was not guided by a quest for beauty while designing experiments. In fact, I would have been worried that such an approach might bias the design and interpretation of experiments. Might a desire for seeing Beauty in cell biology lead one to consciously or subconsciously discard results that might seem too messy?

One such key characteristic of a beautiful scientific theory is the simplicity of the underlying concepts. According to Weinberg, Einstein’s theory of gravitation is described in fourteen equations whereas Newton’s theory can be expressed in three. Despite the appearance of greater complexity in Einstein’s theory, Weinberg finds it more beautiful than Newton’s theory because the Einsteinian approach rests on one elegant central principle – the equivalence of gravitation and inertia. Weinberg’s second characteristic for beautiful scientific theories is their inevitability. Every major aspect of the theory seems so perfect that it cannot be tweaked or improved on. Any attempt to significantly modify Einstein’s theory of general relativity would lead to undermining its fundamental concepts, just like any attempts to move around parts of Raphael’s Holy Family would weaken the whole painting.

Can similar principles be applied to biology? I realized that when I give examples of beauty in biology, I focus on the complexity and diversity of life, not its simplicity or inevitability. Perhaps this is due to the fact that Weinberg was describing the search of fundamental laws of physics, laws which would explain the basis of all matter and energy – our universe. As cell biologists, we work several orders of magnitude removed from these fundamental laws. Our building blocks are organic molecules such as proteins and sugars. We find little evidence of inevitability in the molecular pathways we study – cells have an extraordinary ability to adapt. Mutations in genes or derangement in molecular signaling can often be compensated by alternate cellular pathways.

This also points to a fundamental difference in our approaches to the world. Physicists searching for the fundamental laws of nature balance the development of fundamental theories whereas biology in its current form has primarily become an experimental discipline. The latest technological developments in DNA and RNA sequencing, genome editing, optogenetics and high resolution imaging are allowing us to amass unimaginable quantities of experimental data. In fact, the development of technologies often drives the design of experiments. The availability of a genetically engineered mouse model that allows us to track the fate of individual cells that express fluorescent proteins, for example, will give rise to numerous experiments to study cell fate in various disease models and organs. Much of the current biomedical research funding focuses on studying organisms that provide technical convenience such as genetically engineered mice or fulfill a societal goal such as curing human disease.

Uncovering fundamental concepts in biology requires comparative studies across biology and substantial investments in research involving a plethora of other species. In 1990, the National Institutes of Health (NIH – the primary government funding source for biomedical research in the United States) designated a handful of species as model organisms to study human disease, including mice, rats, zebrafish and fruit flies. A recent analysis of the species studied in scientific publications showed that in 1960, roughly half the papers studied what would subsequently be classified as model organisms whereas the other half of papers studied additional species. By 2010, over 80% of the scientific papers were now being published on model organisms and only 20% were devoted to other species, thus marking a significant dwindling of broader research goals in biology. More importantly, even among the model organisms, there has been a clear culling of research priorities with a disproportionately large growth in funding and publications for studies using mice. Thousands of scientific papers are published every month on the cell signaling pathways and molecular biology in mouse and human cells whereas only a minuscule fraction of research resources are devoted to studying signaling pathways in algae.

The question of whether or not biologists should be guided by conceptual Beauty leads us to the even more pressing question of whether we need to broaden biological research. If we want to mirror the dizzying success of fundamental physics during the past century and similarly advance fundamental biology, then we need substantially step-up investments in fundamental biological research that is not constrained by medical goals.



Dietrich, M. R., Ankeny, R. A., & Chen, P. M. (2014). Publication trends in model organism research. Genetics, 198(3), 787-794.

Weinberg, S. (1992). Dreams of a final theory. Vintage.

Note: An earlier version of this article was first published on the 3Quarksdaily blog. 




Dietrich, M., Ankeny, R., & Chen, P. (2014). Publication Trends in Model Organism Research Genetics, 198 (3), 787-794 DOI: 10.1534/genetics.114.169714


Weinberg, Steven (1992). Dreams of a Final Theory Vintage Books

Empathy, Connectedness and Responsibility: German Academics Discuss the Refugee Crisis

Nearly half a million applications for asylum submitted by refugees were processed by German authorities in 2015, according to the German Federal Office for Refugees and Migration. The number of people who were officially registered in Germany as potential asylum seekers was even far higher-roughly one million in 2015 – which suggests that Germany anticipates an even higher number of official asylum applications for 2016. Chancellor Angela Merkel has defied many critics even in her own party and cabinet by emphasizing that Germany can and will take on more refugees, most of whom are coming from war-torn countries such as Syria, Iraq and Afghanistan. “We can do it!” (“Wir schaffen das!”) was the phrase she used in September of 2015 to convey her optimism and determination in the face of ever-growing numbers of refugees and the gradual rise of support for far right extremist demonstrations and violent attacks by far right extremists on refugees centers in Germany.

Refugees welcome


The German media and right wing populists are currently obsessing about statistics such as the fact that the far right and libertarian party AfD (Alternative für Deutschland – Alternative for Germany) will garner 10% of the popular vote or that the vast majority of the refugees are male and could lead to a demographic gender shift if they remain in Germany. While such statistics serve as an important barometer of the political climate in the German electorate or to prepare for the challenges faced by the refugees and German society in the next years, they do not address the fundamental philosophical questions raised by this refugee crisis. In the latest issue of the popular German philosophy periodical “Philosophie Magazin“, the editors asked philosophers and other academic scholars to weigh in on some of the key issues and challenges in the face of this crisis.

Should we be motivated by a sense of global responsibility when we are confronted with the terrible suffering experienced by refugees whose homes have been destroyed? The sociologist Hartmut Rosa at the University of Jena responds to this question by suggesting that we should focus on Verbundenheit (“connectedness”) instead of Verantwortung (“responsibility”).  Demanding that those of us who lead privileged lives of safety and reasonable material comfort should feel individually responsible for the suffering of others can lead to a sense of moral exhaustion. Are we responsible for the suffering of millions of people in Syria and East Africa? Are we responsible for the extinction of species as a consequence of climate change? Instead of atomizing – and thus perhaps even rendering irrelevant – the abstract concept of individual responsibility, we should become aware of how we are all connected.

We are connected with the children of Syria and Somalia by virtue of the fact that they are fellow humans who deserve to live, learn and love. We are connected to the species facing extinction by climate change because we share the ecosystems of this planet and our species may also face extinction. For Rosa, the sense of connectedness is what motivates us to help the refugees without trying to precisely determine our relative global responsibility.

Are rational thoughts or emotions a better guide for how to respond to the refugee crisis? The philosopher Volker Gerhardt from the Humboldt University of Berlin emphasizes the importance of balancing rational and emotional responses. Rationally calculating the economic cost of taking on refugees and the benefit of increasing the younger workforce once the refugees are granted permission to settle and work in Germany does not do justice to the issues. Gerhardt is aware of his own background as the child of a refugee mother after World War II who were both cared for by their relatives. Every time he sees a photo of a refugee child, it evokes memories of his own past and serves as a motivation to help. But he is also aware of the limits of such emotional and rational willingness to help. Currently, hundreds of thousands of German citizens are volunteering to help and welcome the refugees by donating their time, money and other essentials but the German government needs to realize that this spirit of charity may become exhausted if the influx of refugees is not restricted. Hilde Landweer is a philosopher at the Free University of Berlin who studies the philosophy of emotions. She explains the underlying mechanisms which allow us to feel empathy for refugees. According to Landweer, there are three components which allow to feel empathy: 1) we have to feel a sense of similarity towards the other person, 2) we have to be able “experience” their situation and 3) we have to realize that one day, we might be able to also find ourselves in such a situation. Germany’s leadership role in its willingness to help the refugees when compared to other developed countries – Britain is planning on taking in 5,000 Syrian refugees per year, the USA only 1,000 to 1,500 – may be rooted in the fact that Germans can identify with the plight of the Syrian refugees. Millions of Germans experienced expulsion and forced resettlement from their homelands after World War II when post-war Germany was carved up. Landweer believes that empathy can be nurtured by meeting refugees and hearing about their personal narratives. But empathy needs to be more than shared pain, it needs to also include looking forward to how one can restore security and joy. This positive vision is what ultimately motivates us to help.

Does Germany have a unique historic responsibility when responding to the refugee crisis? Aleida Assmann is a professor of literary and cultural studies at the University of Konstanz who studies collective memory and its impact on German culture. Assmann refers to the Erinnerungskultur – the culture of remembrance – in Germany. Contemporary Germans are aware of the fact that their ancestors either actively participated or passively ignored the mass murder of millions of Jews, Slavs, gypsies and other ethnicities. According to Assmann, this historic responsibility is sometime summarized as “Auschwitz should never occur again!” but she takes a broader view of this responsibility. The root of Auschwitz was the labeling of fellow humans as fremd – foreign, alien or “other” – which did not deserve respect, empathy and help. Our historic responsibility requires that we avoid the trap of viewing refugees as fremd and instead encounter them with a sense of fellowship. The inherited burden of the Nazi past becomes an opportunity for Germany to define its future: Do we want to become a society that closes its doors to fellow humans in despair or do we want to welcome them in order to build a future society characterized by caring and sharing.

These are just some of the responses given by the philosophers in the Philosophie Magazin issue but they filled me with hope. As a German living in the USA, I often fall into the trap of reading clickbait and sensationalist news articles about the refugee crisis such as the rise of crimes committed by both right wing extremists and refugees in Germany, the imagery of refugees “flooding” German cities and the political gossip about Merkel’s future. But thinking more deeply about the core issues reminds us that what is at stake in Germany is our humanity. Yes, it will be challenging to integrate millions of refugees and provide them with a new Heimat – homeland – but our history and culture compels us to act in a humane fashion and not ignore the plight of fellow human beings.




Note: An earlier version of this article was first published on the 3Quarksdaily blog.

We Have Become Exhausted Slaves in a Culture of Positivity

We live in an era of exhaustion and fatigue, caused by an incessant compulsion to perform. This is one of the central tenets of the book “Müdigkeitsgesellschaft” (translatable as “The Fatigue Society” or “The Tiredness Society“) by the German philosopher Byung-Chul Han. Han is a professor at the Berlin Universität der Künste (University of the Arts) and one of the most widely read contemporary philosophers in Germany. He was born in Seoul where he studied metallurgy before he moved to Germany in the 1980s to pursue a career in philosophy. His doctoral thesis and some of his initial work in the 1990s focused on Heidegger but during the past decade, Han has written about broad range of topics regarding contemporary culture and society. “Müdigkeitsgesellschaft” was first published in 2010 and helped him attain a bit of a rock-star status in Germany despite his desire to avoid too much public attention – unlike some of his celebrity philosopher colleagues.


The book starts out with two biomedical metaphors to describe the 20th century and the emerging 21st century. For Han, the 20th century was an “immunological” era. He uses this expression because infections with viruses and bacteria which provoked immune responses were among the leading causes of disease and death and because the emergence of vaccinations and antibiotics helped conquer these threats. He then extends the “immunological” metaphor to political and societal events. Just like the immune system recognizes bacteria and viruses as “foreign” that needs to be eliminated to protect the “self”, the World Wars and the Cold War were also characterized by a clear delineation of “Us” versus “Them”. The 21stcentury, on the other hand, is a “neuronal” era characterized by neuropsychiatric diseases such as depression, attention deficit hyperactivity disorder (ADHD), burnout syndrome and borderline personality disorder. Unlike the diseases in the immunological era, where there was a clear distinction between the foreign enemy microbes that needed to be eliminated and the self, these “neuronal” diseases make it difficult to assign an enemy status. Who are the “enemies” in burnout syndrome or depression? Our environment? Our employers? Our own life decisions and choices? Are we at war with ourselves in these “neuronal” conditions? According to Han, this biomedical shift in diseases is mirrored by a political shift in a globalized world where it becomes increasingly difficult to define the “self” and the “foreign”. We may try to assign a “good guy” and “bad guy” status to navigate our 21st century but we also realize that we are so interconnected that these 20th century approaches are no longer applicable.

The cell biologist in me cringed when I read Han’s immunologic and neuronal metaphors. Yes, it is true that successfully combatting infectious diseases constituted major biomedical victories in the 20th century but these battles are far from over. The recent Ebola virus scare, the persistence of malaria resistance, the under-treatment of HIV and the emergence of multi-drug resistant bacteria all indicate that immunology and infectious disease will play central roles in the biomedical enterprise of the 21st century. The view that the immune system clearly distinguishes between “self” and “foreign” is also overly simplistic because it ignores that autoimmune diseases, many of which are on the rise and for which we still have very limited treatment options, are immunological examples of where the “self” destroys itself. Even though I agree that neuroscience will likely be the focus of biomedical research, it seems like an odd choice to select a handful of psychiatric illnesses as representing the 21st century while ignoring major neuronal disorders such as Alzheimer’s dementia, stroke or Parkinson’s disease. He also conflates specific psychiatric illnesses with the generalized increase in perceived fatigue and exhaustion.

Once we move past these ill- chosen biomedical examples, Han’s ideas become quite fascinating. He suggests that the reason why we so often feel exhausted and fatigued is because we are surrounded by a culture of positivity. At work, watching TV at home or surfing the web, we are inundated by not-so-subtle messages of what we can do. Han quotes the example of the “Yes We Can” slogan from the Obama campaign. “Yes We Can” exudes positivity by suggesting that all we need to do is try harder and that there may be no limits to what we could achieve. The same applies to the Nike “Just Do It” slogan and the thousands of self-help books published each year which reinforce the imperative of positive thinking and positive actions.

Here is the crux of Han’s thesis. “Yes We Can” sounds like an empowering slogan, indicating our freedom and limitless potential. But according to Han, this is an illusory freedom because the message enclosed within “Yes We Can” is “Yes We Should”. Instead of living in a Disziplinargesellschaft(disciplinary society) of the past where our behavior was clearly regulated by societal prohibitions and commandments, we now live in a Leistungsgesellschaft (achievement society) in which we voluntarily succumb to the pressure of achieving. The Leistungsgesellschaft is no less restrictive than the Disziplinargesellschaft. We are no longer subject to exogenous prohibitions but we have internalized the mandates of achievement, always striving to do more. We have become slaves to the culture of positivity, subjugated by the imperative “Yes, We Should”. Instead of carefully contemplating whether or not to pursue a goal, the mere knowledge that we could achieve it forces us to strive towards that goal. Buying into the “Yes We Can” culture chains us to a life of self-exploitation and we are blinded by passion and determination until we collapse. Han uses the sad German alliteration “Erschöpfung, Ermüdung und Erstickung” (“exhaustion, fatigue and suffocation”) to describe the impact that an excess of positivity has once we forgo our ability to say “No!” to the demands of the achievement society. We keep on going until our minds and bodies shut down and this is why we live in a continuous state of exhaustion and fatigue. Han does not view multitasking as a sign of civilizational progress. Multitasking is an indicator of regression because it results in a broad but rather superficial state of attention and thus prevents true contemplation

It is quite easy for us to relate to Han’s ideas at our workplace. Employees with a “can-do” attitude are praised but you will rarely see a plaque awarded to commemorate an employee’s “can-contemplate” attitude. In an achievement society, employers no longer have to exploit us because we willingly take on more and more tasks to prove our own self-worth.

While reading Han’s book, I was reminded of a passage in Bertrand Russell’s essay “In Praise of Idleness” in which he extols the virtues of reducing our workload to just four hours a day:

In a world where no one is compelled to work more than four hours a day, every person possessed of scientific curiosity will be able to indulge it, and every painter will be able to paint without starving, however excellent his pictures may be. Young writers will not be obliged to draw attention to themselves by sensational pot-boilers, with a view to acquiring the economic independence needed for monumental works, for which, when the time at last comes, they will have lost the taste and capacity. Men who, in their professional work, have become interested in some phase of economics or government, will be able to develop their ideas without the academic detachment that makes the work of university economists often seem lacking in reality. Medical men will have the time to learn about the progress of medicine, teachers will not be exasperatedly struggling to teach by routine methods things which they learnt in their youth, which may, in the interval, have been proved to be untrue.

Above all, there will be happiness and joy of life, instead of frayed nerves, weariness, and dyspepsia. The work exacted will be enough to make leisure delightful, but not enough to produce exhaustion. Since men will not be tired in their spare time, they will not demand only such amusements as are passive and vapid. At least one per cent will probably devote the time not spent in professional work to pursuits of some public importance, and, since they will not depend upon these pursuits for their livelihood, their originality will be unhampered, and there will be no need to conform to the standards set by elderly pundits. But it is not only in these exceptional cases that the advantages of leisure will appear. Ordinary men and women, having the opportunity of a happy life, will become more kindly and less persecuting and less inclined to view others with suspicion.

While Russell’s essay proposes reduction of work hours as a solution, Han’s critique of the achievement society and its impact on generalized fatigue and malaise is not limited to our workplace. By accepting the mandate of continuous achievement and hyperactivity, we apply this approach even to our leisure time. Whether it is counting the steps we walk with our fitness activity trackers or competitively racking up museum visits as a tourist, our obsession with achievement permeates all aspects of our lives. Is there a way out of this vicious cycle of excess positivity and persistent exhaustion? We need to be mindful of our right to refuse. Instead of piling on tasks for ourselves during work and leisure we need to recognize the value and strength of saying “No”. Han introduces the concept of “heilende Müdigkeit” (healing tiredness), suggesting that there is a form of tiredness that we should welcome because it is an opportunity for rest and regeneration. Weekend days are often viewed as days reserved for chores and leisure tasks that we are unable to pursue during regular workdays. By resurrecting the weekend as the time for actual rest, idleness and contemplation we can escape from the cycle of exhaustion. We have to learn not-doing in a world obsessed with doing.

Notes: An earlier version of this article was first published on the 3Quarksdaily Blog. Müdigkeitsgesellschaft was translated into English in 2015 and is available as “The Burnout Society” by Stanford University Press.


Byung-Chul Han (2015). The Burnout Society Stanford University Press

Murder Your Darling Hypotheses But Do Not Bury Them

“Whenever you feel an impulse to perpetrate a piece of exceptionally fine writing, obey it—whole-heartedly—and delete it before sending your manuscript to press. Murder your darlings.”

Sir Arthur Quiller-Couch (1863–1944). On the Art of Writing. 1916


Murder your darlings. The British writer Sir Arthur Quiller Crouch shared this piece of writerly wisdom when he gave his inaugural lecture series at Cambridge, asking writers to consider deleting words, phrases or even paragraphs that are especially dear to them. The minute writers fall in love with what they write, they are bound to lose their objectivity and may not be able to judge how their choice of words will be perceived by the reader. But writers aren’t the only ones who can fall prey to the Pygmalion syndrome. Scientists often find themselves in a similar situation when they develop “pet” or “darling” hypotheses.

Hypothesis via Shutterstock
Hypothesis via Shutterstock

How do scientists decide when it is time to murder their darling hypotheses? The simple answer is that scientists ought to give up scientific hypotheses once the experimental data is unable to support them, no matter how “darling” they are. However, the problem with scientific hypotheses is that they aren’t just generated based on subjective whims. A scientific hypothesis is usually put forward after analyzing substantial amounts of experimental data. The better a hypothesis is at explaining the existing data, the more “darling” it becomes. Therefore, scientists are reluctant to discard a hypothesis because of just one piece of experimental data that contradicts it.

In addition to experimental data, a number of additional factors can also play a major role in determining whether scientists will either discard or uphold their darling scientific hypotheses. Some scientific careers are built on specific scientific hypotheses which set apart certain scientists from competing rival groups. Research grants, which are essential to the survival of a scientific laboratory by providing salary funds for the senior researchers as well as the junior trainees and research staff, are written in a hypothesis-focused manner, outlining experiments that will lead to the acceptance or rejection of selected scientific hypotheses. Well written research grants always consider the possibility that the core hypothesis may be rejected based on the future experimental data. But if the hypothesis has to be rejected then the scientist has to explain the discrepancies between the preferred hypothesis that is now falling in disrepute and all the preliminary data that had led her to formulate the initial hypothesis. Such discrepancies could endanger the renewal of the grant funding and the future of the laboratory. Last but not least, it is very difficult to publish a scholarly paper describing a rejected scientific hypothesis without providing an in-depth mechanistic explanation for why the hypothesis was wrong and proposing alternate hypotheses.

For example, it is quite reasonable for a cell biologist to formulate the hypothesis that protein A improves the survival of neurons by activating pathway X based on prior scientific studies which have shown that protein A is an activator of pathway X in neurons and other studies which prove that pathway X improves cell survival in skin cells. If the data supports the hypothesis, publishing this result is fairly straightforward because it conforms to the general expectations. However, if the data does not support this hypothesis then the scientist has to explain why. Is it because protein A did not activate pathway X in her experiments? Is it because in pathway X functions differently in neurons than in skin cells? Is it because neurons and skin cells have a different threshold for survival? Experimental results that do not conform to the predictions have the potential to uncover exciting new scientific mechanisms but chasing down these alternate explanations requires a lot of time and resources which are becoming increasingly scarce. Therefore, it shouldn’t come as a surprise that some scientists may consciously or subconsciously ignore selected pieces of experimental data which contradict their darling hypotheses.

Let us move from these hypothetical situations to the real world of laboratories. There is surprisingly little data on how and when scientists reject hypotheses, but John Fugelsang and Kevin Dunbar at Dartmouth conducted a rather unique study “Theory and data interactions of the scientific mind: Evidence from the molecular and the cognitive laboratory” in 2004 in which they researched researchers. They sat in at scientific laboratory meetings of three renowned molecular biology laboratories at carefully recorded how scientists presented their laboratory data and how they would handle results which contradicted their predictions based on their hypotheses and models.

In their final analysis, Fugelsang and Dunbar included 417 scientific results that were presented at the meetings of which roughly half (223 out of 417) were not consistent with the predictions. Only 12% of these inconsistencies lead to change of the scientific model (and thus a revision of hypotheses). In the vast majority of the cases, the laboratories decided to follow up the studies by repeating and modifying the experimental protocols, thinking that the fault did not lie with the hypotheses but instead with the manner how the experiment was conducted. In the follow up experiments, 84 of the inconsistent findings could be replicated and this in turn resulted in a gradual modification of the underlying models and hypotheses in the majority of the cases. However, even when the inconsistent results were replicated, only 61% of the models were revised which means that 39% of the cases did not lead to any significant changes.

The study did not provide much information on the long-term fate of the hypotheses and models and we obviously cannot generalize the results of three molecular biology laboratory meetings at one university to the whole scientific enterprise. Also, Fugelsang and Dunbar’s study did not have a large enough sample size to clearly identify the reasons why some scientists were willing to revise their models and others weren’t. Was it because of varying complexity of experiments and models? Was it because of the approach of the individuals who conducted the experiments or the laboratory heads? I wish there were more studies like this because it would help us understand the scientific process better and maybe improve the quality of scientific research if we learned how different scientists handle inconsistent results.

In my own experience, I have also struggled with results which defied my scientific hypotheses. In 2002, we found that stem cells in human fat tissue could help grow new blood vessels. Yes, you could obtain fat from a liposuction performed by a plastic surgeon and inject these fat-derived stem cells into animal models of low blood flow in the legs. Within a week or two, the injected cells helped restore the blood flow to near normal levels! The simplest hypothesis was that the stem cells converted into endothelial cells, the cell type which forms the lining of blood vessels. However, after several months of experiments, I found no consistent evidence of fat-derived stem cells transforming into endothelial cells. We ended up publishing a paper which proposed an alternative explanation that the stem cells were releasing growth factors that helped grow blood vessels. But this explanation was not as satisfying as I had hoped. It did not account for the fact that the stem cells had aligned themselves alongside blood vessel structures and behaved like blood vessel cells.

Even though I “murdered” my darling hypothesis of fat –derived stem cells converting into blood vessel endothelial cells at the time, I did not “bury” the hypothesis. It kept ruminating in the back of my mind until roughly one decade later when we were again studying how stem cells were improving blood vessel growth. The difference was that this time, I had access to a live-imaging confocal laser microscope which allowed us to take images of cells labeled with red and green fluorescent dyes over long periods of time. Below, you can see a video of human bone marrow mesenchymal stem cells (labeled green) and human endothelial cells (labeled red) observed with the microscope overnight. The short movie compresses images obtained throughout the night and shows that the stem cells indeed do not convert into endothelial cells. Instead, they form a scaffold and guide the endothelial cells (red) by allowing them to move alongside the green scaffold and thus construct their network. This work was published in 2013 in the Journal of Molecular and Cellular Cardiology, roughly a decade after I had been forced to give up on the initial hypothesis. Back in 2002, I had assumed that the stem cells were turning into blood vessel endothelial cells because they aligned themselves in blood vessel like structures. I had never considered the possibility that they were scaffold for the endothelial cells.

This and other similar experiences have lead me to reformulate the “murder your darlings” commandment to “murder your darling hypotheses but do not bury them”. Instead of repeatedly trying to defend scientific hypotheses that cannot be supported by emerging experimental data, it is better to give up on them. But this does not mean that we should forget and bury those initial hypotheses. With newer technologies, resources or collaborations, we may find ways to explain inconsistent results years later that were not previously available to us. This is why I regularly peruse my cemetery of dead hypotheses on my hard drive to see if there are ways of perhaps resurrecting them, not in their original form but in a modification that I am now able to test.




Fugelsang, J., Stein, C., Green, A., & Dunbar, K. (2004). Theory and Data Interactions of the Scientific Mind: Evidence From the Molecular and the Cognitive Laboratory. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 58 (2), 86-95 DOI: 10.1037/h0085799


Note: An earlier version of this article first appeared on 3Quarksdaily.

STEM Education Promotes Critical Thinking and Creativity: A Response to Fareed Zakaria

Fareed Zakaria recently wrote an article in the Washington Post lamenting the loss of liberal arts education in the United States. However, instead of making a case for balanced education, which integrates various forms of creativity and critical thinking promoted by STEM (science, technology, engineering and mathematics) and by a liberal arts education, Zakaria misrepresents STEM education as primarily teaching technical skills and also throws in a few cliches about Asians. You can read my response to his article at 3Quarksdaily.



Literature and Philosophy in the Laboratory Meeting

Research institutions in the life sciences engage in two types of regular scientific meet-ups: scientific seminars and lab meetings. The structure of scientific seminars is fairly standard. Speakers give Powerpoint presentations (typically 45 to 55 minutes long) which provide the necessary scientific background, summarize their group’s recent published scientific work and then (hopefully) present newer, unpublished data. Lab meetings are a rather different affair. The purpose of a lab meeting is to share the scientific work-in-progress with one’s peers within a research group and also to update the laboratory heads. Lab meetings are usually less formal than seminars, and all members of a research group are encouraged to critique the presented scientific data and work-in-progress. There is no need to provide much background information because the audience of peers is already well-acquainted with the subject and it is not uncommon to show raw, unprocessed data and images in order to solicit constructive criticism and guidance from lab members and mentors on how to interpret the data. This enables peer review in real-time, so that, hopefully, major errors and flaws can be averted and newer ideas incorporated into the ongoing experiments.


During the past two decades that I have actively participated in biological, psychological and medical research, I have observed very different styles of lab meetings. Some involve brief 5-10 minute updates from each group member; others develop a rotation system in which one lab member has to present the progress of their ongoing work in a seminar-like, polished format with publication-quality images. Some labs have two hour meetings twice a week, other labs meet only every two weeks for an hour. Some groups bring snacks or coffee to lab meetings, others spend a lot of time discussing logistics such as obtaining and sharing biological reagents or establishing timelines for submitting manuscripts and grants. During the first decade of my work as a researcher, I was a trainee and followed the format of whatever group I belonged to. During the past decade, I have been heading my own research group and it has become my responsibility to structure our lab meetings. I do not know which format works best, so I approach lab meetings like our experiments. Developing a good lab meeting structure is a work-in-progress which requires continuous exploration and testing of new approaches. During the current academic year, I decided to try out a new twist: incorporating literature and philosophy into the weekly lab meetings.

My research group studies stem cells and tissue engineeringcellular metabolism in cancer cells and stem cells and the inflammation of blood vessels. Most of our work focuses on identifying molecular and cellular pathways in cells, and we then test our findings in animal models. Over the years, I have noticed that the increasing complexity of the molecular and cellular signaling pathways and the technologies we employ makes it easy to forget the “big picture” of why we are even conducting the experiments. Determining whether protein A is required for phenomenon X and whether protein B is a necessary co-activator which acts in concert with protein A becomes such a central focus of our work that we may not always remember what it is that compels us to study phenomenon X in the first place. Some of our research has direct medical relevance, but at other times we primarily want to unravel the awe-inspiring complexity of cellular processes. But the question of whether our work is establishing a definitive cause-effect relationship or whether we are uncovering yet another mechanism within an intricate web of causes and effects sometimes falls by the wayside. When asked to explain the purpose or goals of our research, we have become so used to directing a laser pointer onto a slide of a cellular model that it becomes challenging to explain the nature of our work without visual aids.

This fall, I introduced a new component into our weekly lab meetings. After our usual round-up of new experimental data and progress, I suggested that each week one lab member should give a brief 15 minute overview about a book they had recently finished or were still reading. The overview was meant to be a “teaser” without spoilers, explaining why they had started reading the book, what they liked about it, and whether they would recommend it to others. One major condition was to speak about the book without any Powerpoint slides! But there weren’t any major restrictions when it came to the book; it could be fiction or non-fiction and published in any language of the world (but ideally also available in an English translation). If lab members were interested and wanted to talk more about the book, then we would continue to discuss it, otherwise we would disband and return to our usual work. If nobody in my lab wanted to talk about a book then I would give an impromptu mini-talk (without Powerpoint) about a topic relating to the philosophy or culture of science. I use the term “culture of science” broadly to encompass topics such as the peer review process and post-publication peer review, the question of reproducibility of scientific findings, retractions of scientific papers, science communication and science policy – topics which have not been traditionally considered philosophy of science issues but still relate to the process of scientific discovery and the dissemination of scientific findings.

One member of our group introduced us to “For Whom the Bell Tolls” by Ernest Hemingway. He had also recently lived in Spain as a postdoctoral research fellow and shared some of his own personal experiences about how his Spanish friends and colleagues talked about the Spanish Civil War. At another lab meeting, we heard about “Sycamore Row” by John Grisham and the ensuring discussion revolved around race relations in Mississippi. I spoke about “A Tale for a Time Being” by Ruth Ozeki and the difficulties that the book’s protagonist faced as an outsider when her family returned to Japan after living in Silicon Valley. I think that the book which got nearly everyone in the group talking was “Far From the Tree: Parents, Children and the Search for Identity” by Andrew Solomon. The book describes how families grapple with profound physical or cognitive differences between parents and children. The PhD student who discussed the book focused on the “Deafness” chapter of this nearly 1000-page tome but she also placed it in the broader context of parenting, love and the stigma of disability. We stayed in the conference room long after the planned 15 minutes, talking about being “disabled” or being “differently abled” and the challenges that parents and children face.

On the weeks where nobody had a book they wanted to present, we used the time to touch on the cultural and philosophical aspects of science such as Thomas Kuhn’s concept of paradigm shifts in “The Structure of Scientific Revolutions“, Karl Popper’s principles of falsifiability of scientific statements, the challenge of reproducibility of scientific results in stem cell biology and cancer research, or the emergence of Pubpeer as a post-publication peer review website. Some of the lab members had heard of Thomas Kuhn’s or Karl Popper’s ideas before, but by coupling it to a lab meeting, we were able to illustrate these ideas using our own work. A lot of 20th century philosophy of science arose from ideas rooted in physics. When undergraduate or graduate students take courses on philosophy of science, it isn’t always easy for them to apply these abstract principles to their own lab work, especially if they pursue a research career in the life sciences. Thomas Kuhn saw Newtonian and Einsteinian theories as distinct paradigms, but what constitutes a paradigm shift in stem cell biology? Is the ability to generate induced pluripotent stem cells from mature adult cells a paradigm shift or “just” a technological advance?

It is difficult for me to know whether the members of my research group enjoy or benefit from these humanities blurbs at the end of our lab meetings. Perhaps they are just tolerating them as eccentricities of the management and maybe they will tire of them. I personally find these sessions valuable because I believe they help ground us in reality. They remind us that it is important to think and read outside of the box. As scientists, we all read numerous scientific articles every week just to stay up-to-date in our area(s) of expertise, but that does not exempt us from also thinking and reading about important issues facing society and the world we live in. I do not know whether discussing literature and philosophy makes us better scientists but I hope that it makes us better people.


Note: An earlier version of this article was first published on the 3Quarksdaily blog.


Thomas Kuhn (2012). The Structure of Scientific Revolutions University of Chicago Press DOI: 10.7208/chicago/9780226458106.001.0001